吉林大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (5): 1642-1651.doi: 10.13229/j.cnki.jdxbgxb201505038

Previous Articles     Next Articles

Noise cancellation algorithm for surface magnetic resonance signals based on self-adaption and reconstruction of wavelet modulus maximum value

SUN Shu-qin, MENG Qing-yun, FANG Xiu-cheng, LIN Jun, WANG Ying-ji, TIAN Bao-feng, YANG Nan   

  1. College of Instrumentation and Electrical Engineering, Jilin University, Changchun 130061, China
  • Received:2014-05-16 Online:2015-09-01 Published:2015-09-01

Abstract: Based on the principle of binary wavelet transform, a method of reconstruction of wavelet modulus maximum value for the noise in Magnetic Resonance Sound (MRS) signals is proposed. Combined with adaptive notch filter, the method is used to filter out noise. By analysis of the data of the initial amplitude, the average decay time and phase etc posterior the fitting of envelope signals, it is known that after several times of filtering processing of the noise signals, the obtained fitting error of the characteristic parameters is minimum, and the Signal to Noise Ratio (SNR) is obviously improved. Real data were measured and noise filtering was carried out using the proposed method in this paper. The obtained results are in good agreement with the drilling results, which verifies the effectiveness of the proposed method.

Key words: communication technology, magnetic resonance sounding, interference filter, adaptive filter, reconstruction of wavelet modulus maximum value

CLC Number: 

  • TN911
[1] Legchenko A, Baltassat J M, Bobachev A, et al. Magnetic resonance sounding applied to aquifer characterization[J]. Ground Water, 2004, 42(3): 363-373.
[2] Legchenko A, Baltassat, J M, Beauce A, et al. Nuclear magnetic resonance as a geophysical tool for hydrogeologists[J]. Journal of Applied Geophysics, 2002, 50 (1):21-46.
[3] Müller-Petke M, Hiller T, Herrmann R, et al. Reliability and limitations of surface NMR assessed by comparison to borehole NMR[J]. Near Surface Geophysics, 2011, 9(2): 123-134.
[4] Vouillamoz J M, Legchenko A, Nandagiri L. Characterizing aquifers when using magnetic resonance sounding in a heterogeneous geomagnetic field[J]. Near Surface Geophysics, 2011,9(2): 135-144.
[5] Juan Plata, Felix Rubio. MRS experiments in a noisy area of a detrital aquifer in the south of Spain[J]. Journal of Applied Geophysics, 2002, 50(1):83-94.
[6] Jiang C D, Lin J, Duan Q M, et al. Statistical stacking and adaptive notch filter to remove high-level electromagnetic noise from MRS measurements[J]. Near Surface Geophysics, 2011, 9(5):459-468.
[7] Konstantinos Chalikakis, Mette Ryom Nielsen, Anatoly Legchenko. MRS applicability for a study of glacial sedimentary aquifers in Central Jutland, Denmark[J]. Journal of Applied Geophysics, 2008, 66(3):176-187.
[8] Trushkin D V, Shushakov O A, Legchenko A V. The potential of a noise-reducing antenna for surface NMR groundwater surveys in the earth's magnetic field[J]. Geophysical Prospecting, 1994, 42(8): 855-862.
[9] Anatoly Legchenko, Pierre Valla. A review of the basic principles for proton magnetic resonance sounding measurements[J]. Journal of Applied Geophysics, 2002, 50(1):3-19.
[10] Legchenko A, Valla P. Processing of surface proton magnetic resonance signals using non-linear fitting[J]. Journal of Applied Geophysics, 1998, 39(2): 77-83.
[11] Legchenko A, Valla P. Removal of power-line harmonics from proton magnetic resonance measurements[J]. Journal of Applied Geophysics, 2003, 53(2): 103-120.
[12] Legchenko A. MRS measurements and inversion in presence of EM noise[J]. Boletín Geológico y Minero, 2007, 118(3): 489-508.
[13] Walsh D O. Multi-channel surface NMR instrumentation and software for 1D/2D groundwater investigations[J]. Journal of Applied Geophysics, 2008, 66(3): 140-150.
[14] 田宝凤, 段清明. 核磁共振信号工频谐波的自适应滤除方法[J]. 吉林大学学报:信息科学版, 2009,27(3):223-228. Tian Bao-feng, Duan Qing-ming. Removal method of industrial frequency harmonics in nuclear magnetic resonance signal based on adaptive filter[J]. Journal of Jilin University (Information Science Edition), 2009, 27(3):223-228.
[15] 田宝凤, 林君, 段清明, 等. 基于参考线圈和变步长自适应的磁共振信号噪声压制方法[J]. 地球物理学报, 2012, 55(7):2462-2472. Tian Bao-feng, Lin Jun, Duan Qing-ming, et al. Variable step adaptive noise cancellation algorithm for magnetic resonance sounding signal with a reference coil[J]. Chinese Journal of Geophysics, 2012, 55(7):2462-2472.
[16] 曾亮,李振宇,王鹏.小波分析在提高核磁共振找水信号信噪比中的应用探讨[J]. CT 理论与应用研究, 2007, 15(2):1-5. Zeng Liang, Li Zhen-yu, Wang Peng. Improveing S/N ratio of MRS signal of detecting ground water with wavelet analysis[J]. CT Theory and Applications, 2007, 15(2):1-5.
[17] Strehl S, Rommel I, Hertrich M, et al. New strategies for filtering and fitting of MRS signals[C]∥Proc Proceedings 3rd International MRS Workshop, Madrid, Spain, 2006:65-68.
[18] Strehl S. Development of strategies for improved filtering and fitting of SNMR-Signals[D]. Berlin: Department of Applied Geophysics Diplomarbeit,Institute of Applied Geosciences, Technical University of Berlin, 2006.
[19] Abdullah Al Jumah. Denoising of an image using discrete stationary wavelet transform and various thresholding techniques[J]. Journal of Signal and Information Processing, 2013, 4(1):33-41.
[20] Nair S S, Joseph K P. Wavelet based electroretinographic signal analysis for diagnosis[J]. Biomedical Signal Processing and Control, 2014(9):37-44.
[21] 张金榜, 孙艺笑, 王润典, 等. 改进的阈值函数去噪算法[J]. 电子科技,2014, 27(2):17-20. Zhang Jin-bang, Sun Yi-xiao, Wang Run-dian, et al. An improved threshold denoising algorithm[J]. Electronic Science and Technology, 2014, 27(2):17-20.
[22] 李文刚, 张振勇, 王艳波, 等. 小波分析在矿井高密度电法数据处理中的应用[J]. 中国煤炭地质, 2011,23(6):52-55. Li Wen-gang, Zhang Zhen-yong, Wang Yan-bo, et al. Application of wavelet analysis in coalmine high-density electric prospecting data processing[J]. Coal Ceology of China, 2011, 23(6):52-55.
[23] Sun S, Yang N, Lin J, et al. Adaptive analysis of filter methods for magnetic resonance sounding[C]∥In Digital Manufacturing and Automation (ICDMA), IEEE, 2013:106-111.
[24] 秦毅, 王家序, 毛永芳. 基于软阈值和小波模极大值重构的信号降噪[J]. 振动测试与诊断, 2011, 31(5): 543-547. Qin Yi, Wang Jia-xu, Mao Yong-fang. Based on soft threshold and wavelet modulus maxima reconstruction signal noise reduction[J]. Journal of Vibration, Measurement & Diagnosi, 2011, 31(5): 543-547.
[25] 何永红,文鸿雁,靳鹏伟. 基于小波模极大值改进算法的变形模型研究[J]. 测绘科学, 2007, 32(4):18-20. He Yong-hong, Wen Hong-yan, Jin Peng-wei. Deformation of the improved algorithm based on wavelet modulus maxima model research[J]. Science of Surveying and Mapping, 2007, 32(4):18-20.
[1] ZHOU Yan-guo,ZHANG Hai-lin,CHEN Rui-rui,ZHOU Tao. Two-level game approach based resource allocation scheme in cooperative networks [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1879-1886.
[2] SUN Xiao-ying, HU Ze-zheng, YANG Jin-peng. Assessment method of electromagnetic pulse sensitivity of vehicle engine system based on hierarchical Bayesian networks [J]. 吉林大学学报(工学版), 2018, 48(4): 1254-1264.
[3] DONG Ying, CUI Meng-yao, WU Hao, WANG Yu-hou. Clustering wireless rechargeable sensor networks charging schedule based on energy prediction [J]. 吉林大学学报(工学版), 2018, 48(4): 1265-1273.
[4] MOU Zong-lei, SONG Ping, ZHAI Ya-yu, CHEN Xiao-xiao. High accuracy measurement method for synchronous triggering pulse transmission delay in distributed test system [J]. 吉林大学学报(工学版), 2018, 48(4): 1274-1281.
[5] DING Ning, CHANG Yu-chun, ZHAO Jian-bo, WANG Chao, YANG Xiao-tian. High-speed CMOS image sensor data acquisition system based on USB 3.0 [J]. 吉林大学学报(工学版), 2018, 48(4): 1298-1304.
[6] CHEN Rui-rui, ZHANG Hai-lin. Performance analysis of 3D millimeter wave communications [J]. 吉林大学学报(工学版), 2018, 48(2): 605-609.
[7] ZHANG Chao-yi, LI Jin-hai, YAN Yue-peng. Improved Tong detection algorithm with double thresholds [J]. 吉林大学学报(工学版), 2018, 48(2): 610-617.
[8] GUAN Ji-shi, SHI Yao-wu, QIU Jian-wen, SHAN Ze-biao, SHI Hong-wei. New algorithm to estimate characteristic exponent of α-stable distribution [J]. 吉林大学学报(工学版), 2018, 48(2): 618-624.
[9] LI Wei, LI Ya-jie. Satisfactory integrated design between failure accommodation and communication for non-uniform transmission networked control system under discrete event-triggered communication scheme [J]. 吉林大学学报(工学版), 2018, 48(1): 245-258.
[10] SUN Xiao-ying, WANG Zhen, YANG Jin-peng, HU Ze-zheng, CHEN Jian. Electromagnetic susceptibility assessment of electronic throttle based on Bayesian network [J]. 吉林大学学报(工学版), 2018, 48(1): 281-289.
[11] WU Wei, WANG Shi-gang, ZHAO Yan, WEI Jian, ZHONG Cheng. Hexagonal elemental image array generation [J]. 吉林大学学报(工学版), 2018, 48(1): 290-294.
[12] YUAN Jian-guo, ZHANG Xi-ruo, QIU Piao-yu, WANG Yong, PANG Yu, LIN Jin-zhao. Non-iterative phase noise suppression algorithm utilizing cyclic prefix in OFDM systems [J]. 吉林大学学报(工学版), 2018, 48(1): 295-300.
[13] WANG Jin-peng, CAO Fan, HE Xiao-yang, ZOU Nian-yu. Multi carrier system joint receiving method based on MAI and ICI [J]. 吉林大学学报(工学版), 2018, 48(1): 301-305.
[14] SHI Wen-xiao, SUN Hao-ran, WANG Shao-bo. Joint channel allocation and routing algorithm in wireless mesh network [J]. 吉林大学学报(工学版), 2017, 47(6): 1918-1925.
[15] JIANG Lai-wei, SHA Xue-jun, WU Xuan-li, ZHANG Nai-tong. Novel joint user association and resource allocation method in LTE-A HetNets [J]. 吉林大学学报(工学版), 2017, 47(6): 1926-1932.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!