Journal of Jilin University(Engineering and Technology Edition) ›› 2020, Vol. 50 ›› Issue (5): 1923-1933.doi: 10.13229/j.cnki.jdxbgxb20190467

Previous Articles    

Design and test of corn flexible threshing cylinder element

Duan-yang GENG1(),De-lei TAN1,Xing-rui YU1,Guo-liang SU1,Qian WANG1,Xiu-feng LU2,Cheng-qian JIN1   

  1. 1.School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
    2.College of Mechanical and Electrical Engineering, Shandong Career Development College, Jining 272000, China
  • Received:2019-05-17 Online:2020-09-01 Published:2020-09-16

Abstract:

In order to solve the problem of high damage rate of maize kernels and high un-threshing rate during the corn harvest in Huang-Huai-Hai region, a transverse axial flow corn threshing test system is designed, which uses flexible tooth and elastic short rasp bar as the threshing elements. The flexible tooth material is polyurethane, which has high abrasion performance, and the elastic short rasp uses torsion springs as auxiliary elements so that can mitigate the force between the corn ear and rasp bar. With reasonable hypothesis, based on the Hertz contact theory, the stress equation of corn ear under the flexible nail tooth collision is established. Based on the rigid flexible coupling system theory, the force equation of the elastic short stripe and corn ear collision is established. The above analysis indicates that flexible tooth and elastic rasp bar have real potential as new threshing elements to mitigate the force between the corn ear and threshing elements. Through image processing, the corn ear contour map is established. Discrete element analysis software is applied to improve parameters design of elastic short rasp. Simulation experiments were carried out in accordance with the feeding volume of 10 kg/s, and the simulation results improve the device design. Finally, single factor test and optimum parameter combination contrast test were carried out with the rotational speed of cylinder, concave clearance and feeding rate as the test factors. The test results show that the device is superior to the conventional threshing device. It lays the foundation for the next field experiment.

Key words: agriculture engineering, corn, flexible threshing, mechanics analysis, DEM analysis, contrast experiment

CLC Number: 

  • S225.5

Fig.1

Structure of corn flexible threshing test bench for transverse flow"

Fig.2

Flexible cylinder structure and threshingelement arranged expanded view"

Fig.3

Schematic diagram of relationshipbetween concave sieve and roller"

Fig.4

Sketch of impact contacting between flexibletooth and corn ear"

Fig.5

Elastic rasp bar rigid-flexible coupling system"

Fig.6

Flow of corn ear modeling"

Fig.7

Discrete element simulation process"

Fig.8

Analysis of normal contact force between elastic rasp bar and fixed rasp bar"

Fig.9

Analysis of tangential contact force betweenelastic rasp bar and fixed rasp bar"

Table 1

Corn parameters in experiment"

参 数数值
平均果穗长度/mm145.6
平均大端直径/mm50.2
平均小端直径/mm45.6
籽粒含水率/%27.6~28.5

Fig.10

Threshing element"

Fig.11

Test scene photos"

Table 2

Results of different cylinder speed"

滚筒转速/(r·min-1)破碎率/%未脱净率/%
3005.572.80
3504.892.40
4003.471.20
4503.410.67
5004.590.58
5506.480.60

Table 3

Variance analysis at different cylinder speed"

试验指标平方和自由度均方FP显著性
破碎率12.84652.56921.4820.001*
未脱净率9.68351.937192.3781*

Table 4

Results of different concave clearance"

凹板间隙/mm破碎率/%未脱净率/%
206.121.69
304.781.21
403.181.30
502.371.80
602.182.40

Table 5

Variance analysis at different concave clearance"

试验指标平方和自由度均方FP显著性
破碎率22.73845.685244.1826×10-6*
未脱净率1.79640.44920.4510.002*

Table 6

Results of different feed rates"

喂入量破碎率/%未脱净率/%
5.04.370.79
6.53.891.78
8.03.212.08
9.53.983.36
11.05.344.21

Table 7

Variance analysis at different feed rate"

试验指标平方和自由度均方FP显著性
破碎率4.88941.22243.5244×10-4*
未脱净率14.53443.633240.3087×10-6*

Table 8

Validation and contrast test of optimal parameter"

试验序号试验指标最优组合常规
1籽粒破碎率/%2.647.19
未脱净率/%0.620.98
2籽粒破碎率/%3.116.92
未脱净率/%0.510.45
3籽粒破碎率/%2.507.98
未脱净率/%0.641.02
4籽粒破碎率/%3.418.12
未脱净率/%0.270.98
平均籽粒破碎率/%2.916.03
未脱净率/%0.510.86

Fig.12

Kernel damaged rate optimal combination verification and contrast test"

Fig.13

Un-threshed rate optimal combination verification and contrast test"

1 中国国家统计局. 中国统计年鉴2018[EB/OL]. [2018-10-24].
2 邸志峰, 崔中凯, 张华, 等. 纹杆块与钉齿组合式轴流玉米脱粒滚筒的设计与试验[J]. 农业工程学报, 2018, 34(1): 28-34.
Di Zhi-feng, Cui Zhong-kai, Zhang Hua, et al. Design and experiment of rasp bar and nail tooth combined axial flow corn threshing cylinder[J]. Transactions of the CSAE, 2018, 34(1): 28-34.
3 相茂国. 玉米籽粒直收机械适应性研究[D]. 淄博: 山东理工大学农业工程与食品科学学院, 2014.
Xiang Mao-guo. Study on the adaptability of corn grain harvesting device[D]. Zibo: College of Agricultural Engineering and Food Science, Shandong University of Technology, 2014.
4 雷晓鹏. 黄淮海地区玉米机械收获籽粒可行性研究[D]. 保定: 河北农业大学农学院, 2015.
Lei Xiao-peng. Studies on the feasibility of maize mechanically harvesting grain in huanghuaihai regions[D]. Baoding: College of Agronomy, Hebei Agricultural University, 2015.
5 赵武云. 组合式螺旋板齿种子玉米脱粒装置研究[D]. 杨凌: 西北农林科技大学机械与电子工程学院, 2012.
Zhao Wu-yun. Research on combined type of spiral bar tooth threshing mechanism for seed corn[D]. Yangling: College of Mechanical and Electronic Engineering, Northwest A&F University,2012.
6 徐立章, 李耀明, 王成红, 等. 切纵流双滚筒联合收获机脱粒分离装置[J]. 农业机械学报, 2014, 45(2): 105-108, 135.
Xu Li-zhang, Li Yao-ming, Wang Cheng-hong, et al. A combinational threshing and separating unit of combine harvesterwith with a transverse tangential cylinder and an axial rotor[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(2): 105-108, 135.
7 杨立权, 王万章, 张红梅, 等. 切流-横轴流玉米脱粒系统改进设计及台架试验[J]. 农业工程学报, 2018, 34(1): 35-43.
Yang Li-quan, Wang Wan-zhang, Zhang Hong-mei, et al. Improved design and bench test based on tangential flow-transverse axial flow threshing system[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(1): 35-43.
8 Burkhardt T H, Stout B A. Laboratory investigations of corn shelling utilizing high-velocity impact loading[J]. Trans Asae Gen Ed Am Soc Agric Eng, 1974, 17(1): 11-14.
9 Miu P I, Kutzbach H D. Mathematical model of material kinematics in an axial threshing unit[J]. Computers & Electronics in Agriculture, 2007, 58(2): 93-99.
10 Miu P I, Kutzbach H D. Modeling and simulation of grain threshing and separation in threshing units—part I[J]. Computers & Electronics in Agriculture, 2008, 60(1): 96-104.
11 Petkevichius S, Shpokas L, Kutzbach H D. Investigation of the maize ear threshing process[J]. Biosystems Engineering, 2008, 99(4): 532-539.
12 Srison W, Chuan-Udom S, Saengprachatanarug K. Design factors affecting losses and power consumptionof an axial flow corn shelling unit[J]. Songklanakarin Journal of Science & Technology, 2016, 38(5): 591-598.
13 何晓鹏, 蔡学斌, 师建芳,等. 挤搓式玉米脱粒机的研制[J]. 农业工程学报, 2003, 19(2): 105-108.
He Xiao-peng, Cai Xue-bin, Shi Jian-fang. Research and design on corn sheller by extruding and rubbing method[J]. Transactions of the Chinese Society of Agricultural Engineering, 2003, 19(2): 105-108.
14 李心平, 李玉柱, 高吭, 等. 种子玉米籽粒仿生脱粒机理分析[J]. 农业机械学报, 2011, 42(2): 99-103.
Li Xin-ping, Li Yu-zhu, Gao Hang, et al. Bionic threshing progress analysis ofseed corn kernel[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(2): 99-103.
15 李心平, 马义东, 金鑫, 等. 玉米种子仿生脱粒机设计与试验[J]. 农业机械学报, 2015, 46(7): 97-101.
Li Xin-ping, Ma Yi-dong, Jin Xin, et al. Design and test of corn seed bionic threshing[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(7): 97-101.
16 李心平, 熊师, 杜哲, 等. 浮动式玉米单穗脱粒装置设计与试验[J]. 农业机械学报, 2017, 48(7): 104-111.
Li Xin-ping, Xiong Shi, Du Zhe, et al. Design and experiment on floating corn single panicle threshing device[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(7): 104-111.
17 耿端阳, 何珂, 王骞, 等. 横轴流式玉米柔性脱粒装置设计与试验[J]. 农业机械学报, 2019, 50(3): 101-108.
Geng Duan-yang, He Ke, Wang Qian, et al. Design and experiment on transverse axial flow flexible threshing device for corn[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(3): 101-108.
18 屈哲, 张东兴, 杨丽, 等. 纵轴流玉米脱粒分离装置喂入量与滚筒转速试验[J]. 农业机械学报, 2018, 49(2): 58-65.
Qu Zhe, Zhang Dong-xing, Yang Li, et al. Experiment on feed rate and cylinder speed of longitudinal axial flow threshing and separating device for maize[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(2): 58-65.
19 Qian Z J, Jin C Q, Zhang D G. Multiple frictional impact dynamics of threshing process between flexible tooth and grain kernel[J]. Computers & Electronics in Agriculture, 2017, 141: 276-285.
20 蔡超杰, 陈志, 韩增德, 等. 种子玉米生物力学特性与脱粒性能的关系研究[J]. 农机化研究, 2017, 39(4): 192-196.
Cai Chao-jie, Chen Zhi, Han Zeng-de, et al. Stduy on relationship of biomechanical characteristics of corn seed and threshing perforcane[J]. Journal of Agricultural Mechanization Research, 2017, 39(4): 192-196.
21 许大兴, 杨健明. 卧式轴流脱粒分离装置研究[J]. 农业机械学报, 1984, 15(3): 57-66.
Xu Da-xing, Yang Jian-ming. Study of horizontal axial-flow threshing-separating unit characteristics[J]. Transactions of the Chinese Society for Agricultural Machinery, 1984, 15(3): 57-66.
22 徐立章, 李耀明, 丁林峰. 水稻谷粒与脱粒元件碰撞过程的接触力学分析[J]. 农业工程学报, 2008, 24(6): 146-149.
Xu Li-zhang, Li Yao-ming, Ding Lin-feng. Contacting mechanics analysis during impact process between rice and threshing component[J]. Transactions of the Chinese Society of Agricultural Engineering, 2008, 24(6): 146-149.
23 邵志威, 陈智, 侯占峰, 等. BYW-400型冰草种子振动丸粒化包衣机种子丸化运动特性[J]. 农业工程学报, 2018, 34(3): 57-64.
Shao Zhi-wei, Chen Zhi, Hou Zhan-feng, et al. Analysis of pelleting movement characteristics of BYW-400 type vibrating seed coating machine for wheatgrass[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(3): 57-64.
24 丁林峰, 李耀明, 徐立章. 稻谷压缩试验的接触力学分析[J]. 农机化研究, 2007(12): 112-115.
Ding Lin-feng, Li Yao-ming, Xu Li-zhang. Research and analysis in the compressing experimentation about corn with contact mechanicals[J]. Journal of Agricultural Mechanization Research, 2007(12): 112-115.
25 段玥晨, 章定国, 洪嘉振. 作大范围运动柔性梁的一种碰撞动力学求解方法[J]. 机械工程学报, 2012, 48(19): 95-102.
Duan Yue-chen, Zhang Ding-guo, Hong Jia-zhen. Method for solving the impact problem of a flexible beam with large overall motion[J]. Journal of Mechanical Engineering, 2012, 48(19): 95-102.
26 方建士, 李宝玉, 章定国. 大范围运动柔性梁的连续力法撞击动力学分析[J]. 南京理工大学学报: 自然科学版, 2008, 32(6): 661-665.
Fang Jian-shi, Li Bao-yu, Zhang Ding-guo. Continus force approach for impact dynamics of flexible beam in large overall motion[J]. Journal of Nanjing University of Science and Technology(Natural Science), 2008, 32(6): 661-665.
27 刘锦阳, 洪嘉振. 刚-柔耦合动力学系统的建模理论研究[J]. 力学学报, 2002, 34(3): 408-415.
Liu Jin-yang, Hong Jia-zhen. Study on dynamic modeling theory of rigid-flexible coupling system[J]. Theoretical and Applied Mechanics, 2002, 34(3): 408-415.
28 于亚军, 周海玲, 付宏, 等. 基于颗粒聚合体的玉米果穗建模方法[J]. 农业工程学报, 2012, 28(8): 167-174.
Yu Ya-jun, Zhou Hai-ling, Fu Hong, et al. Modeling method of corn ears based on particles agglomerate[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(8): 167-174.
29 于亚军, 于建群, 陈仲, 等. 三维离散元法边界建模软件设计[J]. 农业机械学报, 2011, 42(8): 98-103.
Yu Ya-jun, Yu Jian-qun, Chen Zhong, et al. Design of 3-D DEM boundary modeling software[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(8): 98-103.
30 Kovacs A, Kerenyi G. Modeling of corn ears by discrete element method(DEM)[C]∥Conference on Modelling and Simulation, Cambridge, 2017: 355-361.
31 刘长青, 陈兵旗. 基于机器视觉的玉米果穗参数的图像测量方法[J]. 农业工程学报, 2014, 30(6): 131-138.
Liu Chang-qing, Chen Bing-qi. Method of image detection for ear of corn based on computer vision[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(6): 131-138.
32 王立军, 彭博, 宋慧强. 玉米收获机聚氨酯橡胶筛筛分性能仿真与试验[J]. 农业机械学报, 2018, 49(7): 90-96.
Wang Li-jun, Peng Bo, Song Hui-qiang. Cleaning of maize mixture based on polyurethane rubber sieve[J] Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(7): 90-96.
33 王云霞, 梁志杰, 张东兴, 等. 基于离散元的玉米种子颗粒模型种间接触参数标定[J]. 农业工程学报, 2016, 32(22): 36-42.
Wang Yun-xia, Liang Zhi-jie, Zhang Dong-xing, et al. Calibration method of contact characteristic parameters for corn seeds based on EDEM[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(22): 36-42.
34 付宏, 吕游, 李艳双, 等. 基于离散元法的玉米脱粒过程分析[J]. 吉林大学学报: 工学版, 2012, 42(4): 997-1002.
Fu Hong, Lyu You, Li Yan-shuang, et al. Analysis for corn threshing process based DEM[J]. Journal of Jilin University(Engineering and Technology Edition), 2012, 42(4): 997-1002.
35 王扬, 王晓梅, 陈泽仁, 等. 基于离散元法的玉米籽粒建模[J]. 吉林大学学报: 工学版, 2018, 48(5): 1537-1547.
Wang Yang, Wang Xiao-mei, Chen Ze-ren, et al. Modeling method of maize kernels based on discrete element method[J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1537-1547.
[1] Chao CHENG,Jun FU,Fu-ping HAO,Zhi CHEN,De-yi ZHOU,Lu-quan REN. Effect of motion parameters of cleaning screen on corn cob blocking law [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 351-360.
[2] Rui-tao GAO,Jian SHAN,Zhou YANG,Sheng WEN,Yu-bin LAN,Quan-yong ZHANG,Yang WANG. Real⁃time interpretation system of variable spray prescription map based on plant protection UAV [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 361-374.
[3] JIA Hong-lei, WANG Wan-peng, CHEN Zhi, ZHUANG Jian, WANG Wen-jun, LIU Hui-li. Real-time pressure measurement of profiling elastic press roller based on soil cone index [J]. 吉林大学学报(工学版), 2018, 48(4): 1169-1175.
[4] TIAN Yan-tao, ZHANG Yu, WANG Xiao-yu, CHEN Hua. Estimation of side-slip angle of electric vehicle based on square-root unscented Kalman filter algorithm [J]. 吉林大学学报(工学版), 2018, 48(3): 845-852.
[5] CHEN Dong-hui, LIU Wei, LYU Jian-hua, CHANG Zhi-yong, WU Ting, MU Hai-feng. Bionic design of corn stubble collector based on surface structure of Patinopecten yessoensis [J]. 吉林大学学报(工学版), 2017, 47(4): 1185-1193.
[6] NA Jing-xin, BAI Shuang, LIU Hai-peng, YAN Ya-kun. Effects of drawbead corner radius and metal flow direction on drawbead restraining force [J]. 吉林大学学报(工学版), 2015, 45(5): 1402-1407.
[7] WANG Jing-yu, WANG Ze-wei, GU Qing-tong, HU Xing-jun, WANG Bao-yu. Numerical simulation of transient aerodynamic characteristics of turning vehicle [J]. 吉林大学学报(工学版), 2015, 45(1): 44-48.
[8] LIU Li-wei, MA Song-quan, MA Li-rong. Design and implementation of stereo measure system based on double digital signal processor [J]. 吉林大学学报(工学版), 2013, 43(增刊1): 335-339.
[9] WANG Tong-jian, CHEN Jin-shi, ZHAO Feng, ZHAO Qing-bo, LIU Xin-hui, YUAN Hua-shan. Mechanical-hydraulic co-simulation and experiment of full hydraulic steering systems [J]. 吉林大学学报(工学版), 2013, 43(03): 607-612.
[10] LIU Jing-jing, SUN Yong-hai, DING Jian-feng, SUN Zhong-lei. Optimization of sensor array for identification of corn juice [J]. 吉林大学学报(工学版), 2013, 43(02): 538-543.
[11] JIANG Wei, LU Zhao-yang, LI Jing, LIU Xiao-pei. Text localization algorithm in complex scene based on corner-type feature and histogram of oriented gradients of edge magnitude statistical feature [J]. 吉林大学学报(工学版), 2013, 43(01): 250-255.
[12] ZHANG Qiang, YU Lu-lu, JIA Hong-lei. Design and experiment of handling mechanism for tractors [J]. 吉林大学学报(工学版), 2012, 42(增刊1): 108-112.
[13] WANG Zeng-hui, HUANG Dong-yan, LI Zhuo-shi, JIA Hong-lei, WAN Bao-cheng. Universal the blade the broken stubble power consumption influence of the working parameters of the rotary tiller broken stubble [J]. 吉林大学学报(工学版), 2012, 42(增刊1): 122-125.
[14] ZHOU De-yi, WANG Zi-jia, ZHANG Dan-dan, WU Guan-jun, ZHOU Han-yu. The new device of stalk cutting within corn narvester [J]. 吉林大学学报(工学版), 2012, 42(增刊1): 113-116.
[15] FU Hong, LV You, LI Yan-shuang, YU Jian-qun. Analysis for corn threshing process based DEM [J]. , 2012, 42(04): 997-1002.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!