Journal of Jilin University(Engineering and Technology Edition) ›› 2021, Vol. 51 ›› Issue (1): 154-162.doi: 10.13229/j.cnki.Jdxbgxb20200604

Previous Articles    

Design active suspension system and creeping control strategy for mars rover of China

Bao-feng YUAN1(),Cheng-en WANG1,Meng ZOU2,Ya-fang LIU3,Yun-cheng LIN3,Yang JIA3,Bai-chao CHEN3,Jing-fu JIN2   

  1. 1.School of Mechanical and Power Engineering,Shanghai Jiao Tong University,Shanghai 200240,China
    2.Key Laboratory of Bionic Engineering,Ministry of Education,Jilin University,Changchun 130022,China
    3.Institute of Spacecraft System Engineering,CAST,Beijing 100094,China
  • Received:2020-08-05 Online:2021-01-01 Published:2021-01-20

Abstract:

The active suspension structure of the Mars Rover was designed based on Rocker-Bogie Mechanism, and the creeping control strategy was proposed during a large sinkage. Four Mars Rover creeping tests were carried out. The test results show that the Mars Rover finally escaped from the large sinkage during all of four creeping tests. The average power of the Mars Rover is 13.5-18.94 W, and the maximum power is 24.8-52.4 W when the Mars Rover suspension is creeping. The average current and maximum current of the six drive motors are increased correspondingly compared with normal driving. The average current increases by 9.7%-74.8%, and the maximum current increases by 9.6%-34.5%. The results show that the active suspension combined with the creeping escape strategy can solve the sinkage risk and improve traffic ability of Mars Rover of China.

Key words: mobile system, active suspension, traffic ability, creeping, Mars rover

CLC Number: 

  • V416

Fig.1

Schematic of active suspension"

Fig.2

Working principle of differential mechanism"

Fig.3

Influence of angle adjustment mechanism on state of rover body"

Fig.4

Schematic diagram of angle between rocker and body"

Fig.5

Geometry of mobile system (0<α<π)"

Fig.6

Key dimensions of mobile system"

Fig.7

Derivative of α and θ"

Fig.8

Working principle of angle adjustment mechanism"

Fig.9

Schematic diagram of creeping control strategy"

Fig.10

Creeping control test in lab"

Fig.11

Procedure of creeping test"

Fig.12

Power-swing angle of four creeping test"

Fig.13

Average and maximum current for four creeping test"

1 Yingst R A, Cropper K, Gupta S, et al. Characteristics of pebble and cobble-sized clasts along the curiosity rover traverse from sol 100 to 750: terrain types, potential sources, and transport mechanisms[J]. Icarus, 2016, 280: 72-92.
2 Arvidson R E, Iagnemma K, Maimone M, et al. Mars science laboratory curiosity rover megaripple crossings up to Sol 710 in Gale Crater[J]. Journal of Field Robotics, 2017, 34(3): 495-518.
3 Blake D F, Morris R V, Kocurek G, et al. Curiosity at gale crater, mars: characterization and analysis of the rocknest sand shadow[J]. Science, 2013, 341: 1239505
4 Arvidson R E, Bell J F, Bellutta P, et al. Spirit mars rover mission: overview and selected results from the northern home plate winter haven to the side of scamander crater[J]. Journal of Geophysical Research: Planets, 2010, 115(E7): 633-650.
5 Squyres S W, Arvidson R E, Bollen D, et al. Overview of the opportunity mars exploration rover mission to meridiani planum: eagle crater to purgatory ripple[J]. Journal of Geophysical Research, 2006, 111(E12): 1-19.
6 Ellery A. Planetary Rovers: Robotic Exploration of the Solar System[M]. Berlin: Springer, 2015.
7 张元勋, 黄靖, 韩亮亮. 星表移动探测机器人研究现状综述[J]. 航空学报, 2020, 8: 1-19.
Zhang Yuan-xun, Huang Jing, Han Liang-liang. Review: research status of planetary surface mobile exploration robots[J]. Acta Aeronautica et Astronautica Sinica, 2020, 8: 1-19.
8 Arvidson R E, Degrosse P, Grotzinger J P, et al. Relating geologic units and mobility system kinematics contributing to Curiosity wheel damage at Gale Crater, Mars[J]. Journal of Terramechanics, 2017, 73: 73-93.
9 Ding L, Deng Z Q, Gao H B, et al. Interaction mechanics model for rigid driving wheels of planetary rovers moving on sandy terrain with consideration of multiple physical effects[J]. Journal of Field Robotics, 2014, 32(6): 827-859.
10 薛龙, 党兆龙, 陈百超, 等. 地面力学在火星壤力学参数估计研究中的进展与展望[J]. 宇航学报, 2020, 41(2): 136-146.
Xue Long, Dang Zhao-long, Chen Bai-Chao, et al. Advances and prospects of martian soil parameter identification based on terramechanics[J]. Journal of Astronautics, 2020, 41(2): 136-146.
11 Yang J, Dong M M, Ye J T. A literature review of the rocker-bogie suspension for the planetary rover[C]∥ Proceedings of the International Seminar on Artificial Intelligence, Networking and Information Technology,Thailand, 2017:137-142.
12 Patel N, Slade R, Clemmet J, et al. The ExoMars rover locomotion subsystem[J]. Journal of Terramechanics, 2010, 47(4): 227-242.
13 Heverly M, Matthews J, Lin J, et al. Traverse performance characterization for the mars science laboratory rover[J]. Journal of Field Robotics, 2013, 30(6): 835-846.
14 Ono M, Fuchs T J, Steffy A, et al. Risk-aware planetary rover operation: autonomous terrain classification and path planning[C]∥IEEE Aerospace Conference Proceedings, Bigs Sky,USA,2015: 1-10.
15 薛龙, 党兆龙, 陈百超, 等.面向火星着陆器缓冲试验的模拟火星壤力学特性分析[J]. 吉林大学学报:工学版, 2019, 49(1): 176-186.
Xue Long, Dang Zhao-long, Chen Bai-chao, et al. Terra-mechanics of Mars soil simulant for Martian Lander's landing tests[J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(1): 176-186.
16 Zhou F, Arvidson R E, Bennett K, et al. Simulations of mars rover traverses[J]. Journal of Field Robotics, 2014, 31(1): 141-160.
17 John L C. Mars Exploration Rover Spirit end of mission report[R]. Los Angeles: California Inst of Tech, Pasadena Jet Propulsion Lab, 2015:1-34.
18 李建桥, 薛龙, 邹猛, 等. 已有模拟火壤力学性质分析及新火星壤研制[J]. 吉林大学学报:工学版, 2016, 46(1): 172-178.
Li Jian-qiao, Xue Long, Zou Meng, et al. Terra-mechanics characters and development of Martian simulant regolith [J]. Journal of Jilin University(Engineering and Technology Edition), 2016, 46(1): 172-178.
[1] WANG Jun-nian, YE Tao, SUN Wen, WANG Qing-nian. Vibration isolation performance of energy-regenerative semi-active suspension with variable stiffness and damping [J]. 吉林大学学报(工学版), 2017, 47(3): 701-708.
[2] LI Jing, ZHANG Jia-xu. Integrated control of vehicle chassis system based on robust L2-L/H method [J]. 吉林大学学报(工学版), 2016, 46(6): 1757-1764.
[3] LI Jing, WANG Zi-han, QIN Min, ZHUO Shuai-shuai, CAO Zhen. Design of vertical speed signal filter circuit for semi-active suspension with SimScape [J]. 吉林大学学报(工学版), 2014, 44(4): 912-917.
[4] CHEN Shuang, ZONG Chang-fu, ZHANG Li-jun, YIN Gang. Research on integrated control strategy of ride and roll attitude via active suspension [J]. 吉林大学学报(工学版), 2011, 41(增刊2): 59-64.
[5] MA Li, ZHANG Zhou-yun, GONG Jun. Data disposal of electrical dynamometer system based on RBF neural network and virtual instrument used in vehicle [J]. 吉林大学学报(工学版), 2011, 41(增刊2): 311-315.
[6] LIU Wei,SHI Wen-ku,GUO Fu-xiang,SHEN Zhi-hong,FANG De-guang. Coordinated optimal of automotive suspension based on steering stability [J]. 吉林大学学报(工学版), 2011, 41(03): 602-607.
[7] LI Jing, YU Chun-Xian, SONG Da-Feng, ZHAO Jian, ZHOU Yu. Dampingadjustable shock absorber of semiactive suspension for automobile [J]. 吉林大学学报(工学版), 2010, 40(增刊): 13-0016.
[8] LIU Shun-An, YU Xian-Li, YAO Yong-Ming, CHEN Yan-Li. Vehicle optimization—intelligence integrated control active suspension system based on pitch angle optimization [J]. 吉林大学学报(工学版), 2010, 40(增刊): 17-0023.
[9] CHEN Yi-jie,GU Liang,YANG Zhan-hua,LEI Qiang-shun,HUANG Yu-xin. Heat balance and influence factor of semi-active hydro-pneumatic spring [J]. 吉林大学学报(工学版), 2010, 40(04): 1034-1038.
[10] Yu Shu-you,Chen Hong . H/generalized H2 control of active suspension based on moving horizon strategy [J]. 吉林大学学报(工学版), 2007, 37(05): 1164-1169.
[11] LI You-de, SONG Da-feng, LI Jing, CHU Liang, WANG Dong-ke. Shock absorber controller of damping-adjustable semi-active suspension for CA6440 light-duty bus [J]. 吉林大学学报(工学版), 2004, (1): 71-74.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!