Journal of Jilin University(Engineering and Technology Edition) ›› 2021, Vol. 51 ›› Issue (4): 1427-1436.doi: 10.13229/j.cnki.jdxbgxb20200588
Li-sheng JIN1,2(),Bai-cang GUO1,Fang-rong WANG3,Jian SHI4()
CLC Number:
1 | Dalal N, Triggs B. Histograms of oriented gradients for human detection[C]∥IEEE Conference on Computer Vision and Pattern Recognition (CVPR), San Diego, USA, 2005:886-893. |
2 | Platt J C. A fast algorithm for training support vector machines[J]. Journal of Information Technology, 1998, 2(5):1-28. |
3 | Felzenszwalb P, McAllester D, Ramaman D. A discriminatively trained, multiscale, deformable part model[C]∥IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Anchorage, USA, 2008:1-8. |
4 | Felzenszwalb P, Girshick R, McAllester D, et al. Object detection with discriminatively trained partbased models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(9):1627-1645. |
5 | Felzenszwalb P, Girshick R, McAllester D. Cascade object detection with deformable part models[C]∥IEEE Conference on Computer Vision and Pattern Recognition (CVPR), San Francisco, USA, 2010: 2241-2248. |
6 | Hinton G E, Osindero S, Teh Y. A fast learning algorithm for deep belief nets [J]. Neural Computation, 2006, 18(7): 1527-1554. |
7 | 李晓飞. 基于深度学习的行人及骑车人车载图像识别方法[D]. 北京:清华大学军事交通学院, 2016. |
Li Xiao-fei. On-board pedestrian and cyclist recognition using deep learning methods[D]. Beijing: Military Transport Academy,Tsinghua University, 2016. | |
8 | 李珊珊. 基于深度学习的交通场景多目标检测[D]. 长沙:湖南大学会计学院,2017. |
Li Shan-shan. The research of multi-object detection in traffic scene based on deep learning[D]. Changsha:School of Accounting, Hunan University, 2017. | |
9 | 杨恺, 徐友春, 安相璧, 等. 基于深度学习的车辆检测方法[J]. 计算机与网络, 2018, 44(19): 58-61. |
Yang Kai, Xu You-chun, An Xiang-bi,et al. Vehicle detection method based on deep learning[J]. Computer & Network, 2018, 44(19): 58-61. | |
10 | 华夏, 王新晴, 王东, 等. 基于改进SSD的交通大场景多目标检测[J]. 光学学报, 2018, 38(12): 221-231. |
Hua Xia, Wang Xin-qing, Wang Dong, et al. Multi-objective detection of traffic scenes based on improved SSD[J]. Acta Optica Sinica, 2018, 38(12): 221-231. | |
11 | Dhall A, Dai D, van Gool L. Real-time 3D traffic cone detection for autonomous driving[C]∥The 30th IEEE Intelligent Vehicles Symposium, Paris, France, 2019: 494-501. |
12 | 李大华, 汪宏威, 高强, 等. 一种卷积神经网络的车辆和行人检测算法[J]. 激光杂志, 2020, 41(4):70-75. |
Li Da-hua, Wang Hong-wei, Gao Qiang, et al. Vehicle and pedestrian detection algorithm based on convolutional neural network[J]. Laser Journal, 2020, 41(4):70-75. | |
13 | 新华网. 报告显示:2019年我国外卖行业交易额预计超6000亿元[J]. 中国食品学报, 2020, 20(1):157. |
net Xinhua. Report shows: in 2019, China's foreign sales industry transactions are expected to exceed 600 billion yuan[J]. Journal of Chinese Institute of Food Science and Technology, 2020, 20(1):157. | |
14 | Girshick R, Donahue J, Darrelland T, et al. Rich feature hierarchies for object detection and semantic segmentation[C]∥The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, USA, 2014: 580-587. |
15 | Redmon J, Divvala S, Girshick R, et al. You only look once: unified, real-time object detection[C]∥The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, 2016: 779-788. |
16 | Redmon J, Farhadi A. YOLO9000: better, faster, stronger[C]∥IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, USA, 2017: 6517-6525. |
17 | Redmon J, Farhadi A. YOLOv3: an incremental improvement[C]∥IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, USA, 2018. |
18 | Lin T Y, Dollar P, Girshick R, et al. Feature pyramid networks for object detection[C]∥IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, USA, 2017: 936-944. |
19 | Mark Sandler, Andrew Howard, Zhu Meng-long, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]∥IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, USA, 2018: 4510-4520. |
20 | Howard A G, Zhu M, Chen B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[Z]. arXiv preprint arXiv:, 2017. |
21 | He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]∥IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, 2016: 770-778. |
22 | Ioffe S, Szegedy C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]∥International Conference on International Conference on Machine Learning, Lile, France, 2015: 448-456. |
23 | Wu Yu-xin, He Kai-ming. Group normalization[C]∥European Conference on Computer Vision(ECCV), Munich, Germany,2018: 3-19. |
24 | Qian N. On the momentum term in gradient descent learning algorithms[J]. Neural Networks, 1999, 12(1):145-151. |
25 | Duchi J, Hazan E, Singer Y. Adaptive subgradient methods for online learning and stochastic optimization[J]. Journal of Machine Learning Research, 2011, 12(7):257-269. |
26 | Kingma D, Ba J. Adam: a method for stochastic optimization[DB/OL]. [2018-10-22]. . |
27 | Yu F, Xian W, Chen Y, et al. BDD100K: a diverse driving dataset for heterogeneous multitask learning[C]∥IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, USA, 2020: 2633-2642. |
[1] | Xiang-jun YU,Yuan-hui HUAI,Zong-wei YAO,Zhong-chao SUN,An YU. Key technologies in autonomous vehicle for engineering [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(4): 1153-1168. |
[2] | Jin-qing LI,Jian ZHOU,Xiao-qiang DI. Learning optical image encryption scheme based on CycleGAN [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 1060-1066. |
[3] | Zhen SONG,Jun-liang LI,Gui-qiang LIU. Constant flow prediction method of variable speed hydraulic power source based on deep learning and limitation fuzzy [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 1106-1110. |
[4] | Zhe-ming YUAN,Hong-jie YUAN,Yu-xuan YAN,Qian LI,Shuang-qing LIU,Si-qiao TAN. Automatic recognition and classification of field insects based on lightweight deep learning model [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 1131-1139. |
[5] | Bo PENG,Yuan-yuan ZHANG,Yu-ting WANG,Ju TANG,Ji-ming XIE. Automatic traffic state recognition from videos based on auto⁃encoder and classifiers [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 886-892. |
[6] | Hong-wei ZHAO,Xiao-han LIU,Yuan ZHANG,Li-li FAN,Man-li LONG,Xue-bai ZANG. Clothing classification algorithm based on landmark attention and channel attention [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1765-1770. |
[7] | Hua CHEN,Wei GUO,Jing-wen YAN,Wen-hao ZHUO,Liang-bin WU. A new deep learning method for roads recognition from SAR images [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1778-1787. |
[8] | Qian XU,Ying LI,Gang WANG. Pedestrian-vehicle detection based on deep learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1661-1667. |
[9] | Li⁃min GUO,Xin CHEN,Tao CHEN. Radar signal modulation type recognition based on AlexNet model [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 1000-1008. |
[10] | LI Di-fei, TIAN Di, HU Xiong-wei. A method of deep learning based on distributed memory computing [J]. 吉林大学学报(工学版), 2015, 45(3): 921-925. |
|