Journal of Jilin University(Engineering and Technology Edition) ›› 2021, Vol. 51 ›› Issue (5): 1593-1600.doi: 10.13229/j.cnki.jdxbgxb20200558

Previous Articles    

Electromechanical brake system based on the nonlinear PI controller of urban rail trains

Yi-yun ZHAO1(),Hui LIN1,Bing-qiang LI1,Feng MIAO2   

  1. 1.College of Automation,Northwestern Polytechnical University,Xi'an 710129,China
    2.CRRC Qingdao Sifang Rolling Stock Research Institute Co. ,Ltd. ,Qingdao 266031,China
  • Received:2020-07-23 Online:2021-09-01 Published:2021-09-16

Abstract:

The study establishes the mathematical model of the EMB system. Based on the PI control algorithm with constant set values in small zones, a hyperbolic secant nonlinear PI control algorithm is devised. It can enhance the adaptability and robustness of the system. Furthermore, the improved variable-structure anti-windup algorithm is adopted to decrease the steady-state error. Static experiments verify the effectiveness of the proposed control algorithm. At last, the equal proportion inertia dynamometer brake experiment demonstrates the feasibility of the electro-mechanical braking system. It provides a theoretical foundation for the application of EMB systems in rail transportation.

Key words: train braking, electromechanical brake, nonlinear PI, anti-windup, inertia dynamometer

CLC Number: 

  • TM921.5

Fig.1

EMB system of urban rail train"

Fig.2

EMA stiffness curve of EMB system"

Fig.3

Block diagram of controller"

Fig.4

Graph of clearance adjustment experimental data"

Table 1

Relationships of e and KP"

系统误差比例系数系统误差比例系数
-30~-252030~2520
-25~-201825~2018
-20~-151420~1514
-15~-101015~1010
-10~-5610~56

-5~-0.5

-0.5~0.5

4

2

5~0.54

Fig.5

Curve of nonlinear PI function"

Table 2

Relationships of e and KI"

系统误差积分系数系统误差积分系数
-30~-200-30~-2520
-20~-150.1-25~-2018
-15~-100.25-20~-1514
-10~-50.4-15~-1010
-5~-2.50.7-10~-56

-2.5~-0.5

-0.5~0.5

1

0

5~0.54

Table 3

Parameters of EMA system"

参数数值
直流母线电压VDC/V24
额定转速/(r?min-13028
定子电阻Rm/Ω0.01
定子电感L/H3.3648×10-7
额定转矩Te/(N·m)2.96
磁极对数p4
行星齿轮减速比GR40
丝杠导程L0/mm10

Fig.6

Static experimental platform of EMB system"

Fig.7

Step response curve of static test"

Table 4

Steady state error evaluation table for different control strstegies"

评价指标常规方法本文方法
平均绝对误差/kN0.91140.2350
均方根误差0.15700.0431

Fig.8

Frequency response curve of static test"

Fig.9

Dynamic experimental platform of EMB system"

Fig.10

Curve of brake gear operation test"

Fig.11

Curve of brake gear switch test"

1 吴萌岭, 马天和, 田春, 等. 列车制动技术发展趋势探讨[J]. 中国铁道科学, 2019, 40(1): 134-144.
Wu Meng-ling, Ma Tian-he, Tian Chun, et al. Discussion on development trend of train braking technology[J]. China Railway Science, 2019, 40(1): 134-144.
2 李兵强, 陈晓雷, 林辉, 等. 飞机全电防滑刹车系统稳定动态面控制[J]. 系统工程与电子技术, 2016, 38(5): 1139-1145.
Li Bing-qiang, Chen Xiao-lei, Lin Hui, et al. Enhanced stability dynamic surface control for aircraft anti-skid braking system using electromechanical actuator[J]. Systems Engineering and Electronics, 2016, 38(5): 1139-1145.
3 陈晓雷, 林辉, 李兵强, 等. 飞机全电刹车系统滑移率约束反演滑模控制[J]. 上海交通大学学报, 2015, 49(12): 1855-1861.
Chen Xiao-lei, Lin Hui, Li Bing-qiang, et al. Backstepping sliding mode control for aircraft electric braking systems with slip ratio constraint[J]. Journal of Shanghai Jiao Tong University, 2015, 49(12): 1855-1861.
4 夏利红, 邓兆祥. 电子机械制动执行器的整体最优匹配设计[J]. 吉林大学学报: 工学版, 2018, 48(4): 998-1007.
Xia Li-hong, Deng Zhao-xiang. Optimal design of electromechanical brake actuator through an integrated mechatronic approach[J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(4): 998-1007.
5 李静, 张建, 王梦春, 等. 电子机械制动执行器数学建模与精细控制[J]. 吉林大学学报: 工学版, 2012, 42(): 1-6.
Li Jing, Zhang Jian, Wang Meng-chun, et al. Electromechanical brake actuator modeling and accurate control algorithm[J]. Journal of Jilin University(Engineering and Technology Edition), 2012, 42(Sup.1): 1-6.
6 Ren Y, Li L Y, Brindley J, et al. Nonlinear PI control for variable pitch wind turbine[J]. Control Engineering Practice, 2016, 50: 84-94.
7 Errouissi R, Al-Durra A, Muyeen S M. Design and implementation of a nonlinear PI predictive controller for a grid-tied photovoltaic inverter[J]. IEEE Transactions on Industrial Electronics, 2017, 64(2): 1241-1250.
8 郭文杰, 林飞, 郑琼林. 三相电压型PWM整流器的级联式非线性PI控制[J]. 中国电机工程学报, 2006, 26(2): 138-142.
Guo Wen-jie, Lin Fei, Zheng Qiong-lin. The cascaded nonlinear PI control for three-phase votagle source PWM rectifier[J]. Proceedings of CSEE, 2006, 26(2): 138-142.
9 李虹, 尚佳宁, 陈姚, 等. 基于fal函数的非线性PI控制器在DC-DC变换器中的应用[J]. 电工技术学报, 2014, 29(): 326-331.
Li Hong, Shang Jia-ning, Chen Yao, et al. The applications of nonlinear PI controller based on the fal function in the DC-DC converter[J]. Transactions of China Electrotechinal Society, 2014, 29(Sup.1): 326-331.
10 Honkanen J, Hannonen J, Korhonen J, et al. Nonlinear PI-control approach for improving the DC-link voltage control performance of a power-factor-corrected system[J]. IEEE Transactions on Industrial Electronics, 2019, 66(7): 5456-5464.
11 姜向龙, 赵金, 万淑芸. 基于双曲正切函数的非线性PI控制器及其在感应电动机矢量控制中的应用[J]. 电工技术学报, 2004, 19(6): 85-89.
Jiang Xiang-long, Zhao Jin, Wan Shu-yun. A nonlinear PI speed controller based on hyperbolic function and its application in the vector control of an induction motor[J]. Transactions of China Electrotechnical Society, 2004, 19(6): 85-89.
12 牛里, 杨明, 唐思宇, 等. 基于积分状态预测的Anti-Windup PID控制器设计[J]. 电工技术学报, 2014, 29(9): 145-152.
Niu Li, Yang Ming, Tang Si-yu, et al. Design of Anti-Windup PID controller with integral state prediction[J]. Transactions of China Electrotechinal Society, 2014, 29(9): 145-152.
13 于艳君, 柴凤, 高宏伟, 等. 基于Anti-Windup控制器的永磁同步电机控制系统设计[J]. 电工技术学报, 2009, 24(4): 66-70.
Yu Yan-jun, Chai Feng, Gao Hong-wei, et al. Design of PMSM system based on Anti-Windup controller[J]. Transactions of China Electrotechinal Society, 2009, 24(4): 66-70.
14 Hodel S A, Hall C E. Variable-structure PID control to prevent integrator windup[J]. IEEE Transactions on Industrial Electronics, 2002, 48(2): 442-451.
15 Peng Y B, Vrancic D, Hanus R. Anti-Windup, bumpless, and conditioned transfer techniques for PID controllers[J]. IEEE Control Systems Magazine, 1996, 16(4): 48-57.
16 Visioli A. Modified Anti-Windup scheme for PID controllers[J]. IEE Proceedings-Control Theory and Applications, 2003, 150(1): 49-54.
[1] XIA Li-hong, DENG Zhao-xiang. Optimal design of electromechanical brake actuator through an integrated mechatronic approach [J]. 吉林大学学报(工学版), 2018, 48(4): 998-1007.
[2] WU Jian, ZHAO Yang, HE Rui. Fault detection and diagnosis of EMB sensor system based on SVR [J]. 吉林大学学报(工学版), 2013, 43(05): 1178-1183.
[3] WU Dong-yan, LIU Da-xin, XIE Xu-zhou, ZENG Zhi-yong, CHEN Sheng-gen. Multi-functional inertia dynamometer for main shaft brake of large scale wind turbine generator [J]. 吉林大学学报(工学版), 2013, 43(04): 951-957.
[4] LI Jing, ZHANG Jian, WANG Meng-chun, CHENG Chao, GUO Li-shu, SHI Zheng-tang. Electromechanical brake actuator modeling and accurate control algorithm [J]. 吉林大学学报(工学版), 2012, 42(增刊1): 1-6.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!