Journal of Jilin University(Engineering and Technology Edition) ›› 2021, Vol. 51 ›› Issue (6): 2061-2067.doi: 10.13229/j.cnki.jdxbgxb20200606

Previous Articles    

Improved heuristic algorithm for U⁃shaped assembly line balancing

Yu-ling JIAO1(),Lin LI1,Jin LI1(),Bin-jie XU2,Nan CAO1   

  1. 1.College of Transportation,Jilin University,Changchun 130022,China
    2.College of Transportation Engineering,Central South University,Changsha 410018,China
  • Received:2020-08-10 Online:2021-11-01 Published:2021-11-15
  • Contact: Jin LI E-mail:jyling777@163.com;li_jin@jlu.edu.cn

Abstract:

The type-1 balance model for the single U-shaped assembly line under the assumptions is established. First, according to the characteristics of the adjacency matrix that expresses the priority relationship of the operations, the set of candidate tasks for the entry and exit are determined. Then the assignment tasks are selected in turn according to the comprehensive rank value. Finally, the single U-shaped assembly line balancing problem is solved. Combined with one example, the solution process of the improved heuristic algorithm is explained and programmed. 32 classic examples are calculated using the improved heuristic algorithm program. The calculation results and evaluation indicators are compared with the heuristic algorithm and genetic algorithm respectively. It is verified that the improved heuristic algorithm is effective, fast and stable.

Key words: industrial engineering, U-shaped assembly ling balancing, improved heuristic algorithm, adjacency matrix

CLC Number: 

  • TB491

Fig.1

Job precedence diagram of Jackson-11"

Fig.2

Initial adjacency matrix of Jackson-11"

Table 1

Comprehensive rank value of Jackson-11 job"

作 业
1234567891011
Ni104333322110
WNi65444433221
Ti4619171913171215994
WTi87674635221
Wi483524281624915441

Fig.3

Flowchart of IHA"

Table 2

Distribution result of Jackson-11"

工作站号作业工作站时间空闲时间
11,11100
22,7,10100
34,691
43,9100
55,873

Fig.4

Distribution layout of Jackson-11"

Table 3

Balance results and indicators comparison"

序号算例名称CmLBPUH12GAIHA
mCPU/sE/%VmCPU/sE/%VmCPU/sE/%V
1Mertens 76562.1280.560.1861.0880.560.1261.8580.560.15
27552.2682.860.1451.0682.860.1161.8869.050.15
38452.1372.500.1851.1072.500.1151.8572.500.15
415222.1496.670.0321.1896.670.0321.8296.670.03
5Jaeschke 96782.0877.080.1481.2677.080.1281.8477.080.14
67672.1375.510.1771.2375.510.1371.8975.510.17
78562.0077.080.2061.2577.080.1361.8577.080.19
818332.0368.520.4531.2668.520.1731.8968.520.35
9Jackson 119662.0485.190.1861.4985.190.0861.8885.190.18
1010561.9776.670.1851.4392.000.0451.8492.000.12
1114442.0682.140.1941.4182.140.0441.8682.140.23
1221332.0773.020.3531.4273.020.0331.9373.020.33
13Mitchell 2114882.1293.750.0682.2993.750.0491.8683.330.18
1415782.2387.500.1782.4287.500.0481.9287.500.12
1521562.1483.330.3151.40100.000.0061.9283.330.27
16Heskiaoff 28138882.1892.750.1082.9392.750.0281.9592.750.07
17205562.1983.250.3662.8883.250.0362.0283.250.25
18216552.1394.810.1052.8694.810.0152.0394.810.06
19324442.1279.010.3642.9179.010.0142.2079.010.34
20Kilbridge 455710101.8596.840.03104.4496.840.02112.2388.040.23
2179782.0787.340.3084.3987.340.0382.1987.340.22
2292671.9385.710.3174.4285.710.0472.0885.710.25
23110661.9983.640.3364.4183.640.0362.1083.640.33
24Tonge 7036410102.0096.430.09106.7996.430.02102.1196.430.06
25410992.0295.120.1196.8395.120.0192.1695.120.11
26468882.0693.750.1486.7993.750.0282.1493.750.15
27527771.9695.150.1176.7095.150.0172.1595.150.10
28Arcus 83504815161.9893.730.11168.1693.730.03161.9393.730.08
29684212122.0892.210.16128.1692.210.03122.2192.210.19
30757110112.0790.910.17118.0590.910.03111.9990.910.17
3184129102.0790.000.24108.4490.000.04102.0390.000.23
328898992.1194.540.0998.5994.540.0292.0594.540.06

Fig.5

Comparison chart of three algorithm indicators"

Table 4

Proportion of evaluation indicators"

指标不同数值占比IHA/%PUH/%GA/%
EE>85%56.2556.2562.50
E≤85%43.7543.7537.50
VV>0.2515.6325.000.00
V≤0.2584.3875.00100.00
CPU时间/sCPU>2.043.7578.1359.38
CPU≤2.056.2521.8840.63
1 Miltenburg G J, Wijngaard J. The U-line line balancing problem[J]. Management Science, 1994, 40(10):1378-1388.
2 Li Z X, Kucukkoc I, Tang Q H. New MILP model and station-oriented ant colony optimization algorithm for balancing U-type assembly lines[J]. Computers & Industrial Engineering, 2017, 112:107-121.
3 Li Z X, Kucukkoc I, Zhang Z K. Branch, bound and remember algorithm for U-shaped assembly line balancing problem[J]. Computers & Industrial Engineering, 2018, 124:24-35.
4 Babazadeh H, Alavidoost M H, Zarandi M H F, et al. An enhanced NSGA-II algorithm for fuzzy bi-objective assembly line balancing problems[J]. Computers & Industrial Engineering, 2018, 123:189-208.
5 Fathi M, Alvarez M J, Rodriuez V. A new heuristic-based bi-objective simulated annealing method for U-shaped assembly line balancing[J]. European Journal of Industrial Engineering, 2016, 10(2):145-169.
6 Aydogan E K, Delice Y, Ozcan U, et al. Balancing stochastic U-lines using particle swarm optimization[J]. Journal of Intelligent Manufacturing, 2019, 30(1):97-111.
7 郑巧仙,何国良,李明,等. 第2类U型装配线平衡问题的双阶段蚁群算法[J]. 计算机科学, 2017, 44(6):206-211, 225.
Zheng Qiao-xian, He Guo-liang, Li Ming, et al. Two stage ant colony optimization for type-2 of U-shaped assembly line balncing problem[J]. Computer Science, 2017, 44(6):206-211, 225.
8 童艺川,吴锋. U型装配线的启发式平衡方法[J]. 南京理工大学学报, 2000, 24(5):394-397.
Tong Yi-chuan, Wu Feng. Heuristic balancing method for U-shaped assembly line[J]. Journal of Nanjing University of Science and Technology, 2000, 24(5):394-397.
9 Küçükkoç I, Zhang D Z. Balancing of parallel U-shaped assembly lines[J]. Computers & Operations Research, 2015,64:233-244.
10 Li M, Tang Q H, Zheng Q X, et al. Rules-based heuristic approach for the U-shaped assembly line balancing problem[J]. Applied Mathematical Modeling, 2017, 48:423-439.
11 焦玉玲,邢小翠,朱春凤,等. 简单直线和U型装配线平衡中的改进阶位法[J]. 同济大学学报:自然科学版, 2019, 47(1):143-148.
Jiao Yu-ling, Xing Xiao-cui, Zhu Chun-feng, et al. Modified ranked positional weight technique for assembly line balancing of simple line and U-shape[J]. Journal of Tongji University(Natural Science), 2019, 47(1):143-148.
12 焦玉玲,李名鹃,王占中,等. 一种随机双U型装配线优先权值平衡方法[J]. 吉林大学学报:工学版, 2020, 50(6):2087-2093.
Jiao Yu-ling, Li Ming-juan, Wang Zhan-zhong, et al. A random double U-shaped assembly line balancing method using priority value[J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(6):2087-2093.
[1] YANG Ju-fen,JIANG Gui- yan,MA Ming-hui. Online analysis of traffic operating reliability of road network based on factor theorem [J]. 吉林大学学报(工学版), 2015, 45(1): 68-74.
[2] LYU Feng, YANG Yin-sheng, GUO Chang-qing. New approach of criticality analysis of equipment based on improved fuzzy matter-element model [J]. 吉林大学学报(工学版), 2014, 44(01): 111-116.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!