吉林大学学报(工学版) ›› 2014, Vol. 44 ›› Issue (01): 111-116.doi: 10.13229/j.cnki.jdxbgxb201401020

• paper • Previous Articles     Next Articles

New approach of criticality analysis of equipment based on improved fuzzy matter-element model

LYU Feng1,2, YANG Yin-sheng1, GUO Chang-qing3   

  1. 1. Key Laboratory of Bionic Engineering Ministry of Education, China, Jilin University, Changchun 130022, China;
    2. School of Mechatronics Engineering, Henan University of Science and Technology, Luoyang 471023, China;
    3. School of Management, Jilin University, Changchun 130022, China
  • Received:2012-12-20 Online:2014-01-01 Published:2014-01-01

Abstract:

The concept of equipment criticality has the characteristics of fuzziness and diversity of evaluation index. Uniform evaluation method uses the same weight assignment for different evaluation objects, which does not reflect the optimality of evaluation. To overcome this problem, a new method for equipment criticality evaluation is put forward based on fuzzy matter-element analysis, combing with the concept of Euclid approach degree. The method integrates grey relation analysis based on the cosine distance and data envelopment analysis in a unified way to determine the index weight according to Pareto rule. The fuzzy matter-element model is applied to compute the equipment criticality, thus the grade classification of equipment criticality is obtained. Then, as a case study, experiment on seven equipments in a production line of an agro-machinery enterprise is carried out. The results show that the method can avoid the uncertainty in estimating the weights subjectively, increase the basic discrimination in the evaluation, so it outperforms the available traditional methods.

Key words: industrial engineering, equipment criticality, fuzzy matter-element, grey relation analysis, DEA

CLC Number: 

  • N945.16

[1] Natália F Oshiyama, Rosana A Bassani, Itala M L, et al. Medical equipment classification: method and decision-making support based on paraconsistent annotated logic[J]. Quality and Reliability Engineering International, 2012, 50(4): 395-402.

[2] Guo Li-jie, Gao Jin-ji, Yang Jian-feng, et al. Criticality evaluation of petrochemical equipment based on fuzzy comprehensive evaluation and a BP neural network[J]. Journal of Loss Prevention in the Process Industries, 2009, 22 (4) 469-476.

[3] 杨印生, 孙雨虹, 舒坤良. 农机企业设备重要度可拓评价研究[J]. 农机化研究, 2008(5): 41-44. Yang Yin-sheng, Sun Yu-hong, Shu Kun-liang. Study on extension evaluation of equipment important level in agro-machinery enterprise[J]. Journal of Agricultural Mechanization Research, 2008(5): 41-44.

[4] Marcello Braglia, Marco Frosolini, Roberto Montanari. Fuzzy TOPSIS approach for failure mode, effects and criticality analysis[J]. Quality and Reliability Engineering International, 2003, 19(5): 425-443.

[5] 董玉亮, 顾煜炯, 杨昆. 基于蒙特卡洛模拟的发电厂设备重要度分析[J]. 中国电机工程学报, 2003, 23(8): 201-205. Dong Yu-liang, Gu Yu-jiong, Yang Kun. Criticality analysis on equipment in power plant based on Monte Carlo simulation[J]. Proceedings of the CSEE, 2003, 23(8): 201-205.

[6] 张艳丽, 赵建平. 设备重要度的模糊综合评判[J]. 南京化工大学学报, 1999, 21(6): 40-43. Zhang Yan-li, Zhao Jian-ping. Fuzzy synthetic evaluation of equipment importance[J]. Journal of Nanjing University of Chemical Technology, 1999, 21(6): 40-43.

[7] 郭应征, 冯世元. 设备重要度的Fuzzy聚类分析[J]. 东南大学学报, 1995, 25(3): 96-100. Guo Ying-zheng, Feng Shi-yuan. The fuzzy clustering analysis for chemical apparatus importance classification[J]. Journal of Southeast University, 1995, 25(3): 96-100.

[8] 李常有, 徐敏强. 基于改进的TOPSIS的设备重要度分析[J]. 振动与冲击, 2009, 28(6): 164-167. Li Chang-you, Xu Min-qiang. Criticality analysis of equipment based on the improved TOPSIS[J]. Journal of Vibration and Shock, 2009, 28(6): 164-167.

[9] Félix C Gómez de León Hijes, José Javier Ruiz Cartagena. Maintenance strategy based on a multicriterion classification of equipments[J]. Reliability Engineering and System Safety, 2006, 91(4): 444-451.

[10] 吕锋, 贾现召, 杨晓英, 等. 基于灰关联分析模糊物元模型的矿区污水处理方案优选研究[J].矿业安全与环保, 2008, 35(1): 58-60. Lyu Feng, Jia Xian-zhao, Yang Xiao-ying, et al. Study on fuzzy matter-element model based on grey relevancy analysis on evaluation of wastewater treatment in mining area[J]. Mining Safety & Environmental Protection, 2008, 35(1): 58-60.

[11] Zhang Jing, Wang Ke, Chen Xin-ming, et al. Combining a fuzzy matter-element model with a geographic information system in eco-environmental sensitivity and distribution of land use planning[J]. International Journal of Environmental Research and Public Health, 2011, 8(4): 1206-1221.

[12] Liu Dong-jun, Zou Zhi-hong. Water quality evaluation based on improved fuzzy matter-element method[J]. Journal of Environmental Sciences-CHINA, 2012, 24(7): 1210-1216.

[13] 李柏年. 多目标决策中客观性权重的一种确定方法[J]. 运筹与管理, 2002, 11(5): 36-39. Li Bai-nian. The method of determining the objective weight in mult-purpose decision[J]. Operations Research and Management Science, 2002, 11(5): 36-39.

[14] 王先甲, 张熠. 基于AHP和DEA的非均一化灰色关联方法[J]. 系统工程理论与实践, 2011, 31(7): 1222-1229. Wang Xian-jia, Zhang Yi. Non-uniform grey relational method based on AHP and DEA[J]. Systems Engineering-Theory & Practice, 2011, 31(7): 1222-1229.

[15] 李光金, 黄韬, 岳琳. 仅有产出的多目标DEA及其应用[J]. 四川大学学报:工程科学版, 2001, 33(1): 113-114. Li Guang-jin, Huang Tao, Yue Lin. Multi-objective DEA only for outputs & its application[J]. Journal of Sichuan University (Engineering Science Edition), 2001, 33 (1): 113-114.

[16] Vladimir D Noghin. An axiomatization of the generalized edge worth-Pareto principle in terms of choice functions[J]. Mathematical Social Sciences, 2006, 52(2): 210-216.

[17] 孙雨虹. 农机企业设备更新决策方法与实证研究[D]. 长春: 吉林大学生物与农业工程学院, 2008. Sun Yu-hong. Decision-making methodological and empirical study of equipment replacement in agro-machinery enterprise[D]. Changchun: College of Biological and Agricultural Engineering, Jilin University, 2008.

[1] LUAN Wen-peng, LIU Yong-lei, WANG Peng, JIN Zhi-gang, WANG Jian. Novel universal security mechanism for energy internet based on trusted platform module [J]. 吉林大学学报(工学版), 2017, 47(6): 1933-1938.
[2] LIU Ying, ZHANG Kai, YU Xiang-jun. Multi-objective optimization of hydrostatic bearing of hollow shaft based on surrogate model [J]. 吉林大学学报(工学版), 2017, 47(4): 1130-1137.
[3] WANG Zhi-yuan, LI Guo-dong, WANG Yong-hua. Optimization decision model for bridge design based on AHP-TOPSIS [J]. 吉林大学学报(工学版), 2017, 47(2): 478-482.
[4] ZHOU Bing-hai, ZHOU Qi. Impending deadlock-free scheduling method for unified AMHS in semiconductor FABs [J]. 吉林大学学报(工学版), 2016, 46(2): 595-601.
[5] LEI Yu-long,LIU Ke,FU Yao,SUN Shao-hua,ZENG Hua-bing. Shift quality evaluation model based on ideal shift process [J]. 吉林大学学报(工学版), 2015, 45(2): 358-363.
[6] ZONG Chang-fu, LIN Na, LI Gang, ZHANG Ze-xing, CHENG Wei, ZHENG Hong-yu, LIU Ming-hui. Neural network modeling of ideal characteristics reference model for "car adaption for driver" X-by-wire vehicle [J]. 吉林大学学报(工学版), 2013, 43(增刊1): 514-520.
[7] CHEN Chuan-hai, YANG Zhao-jun, CHEN Fei, HAO Qin-bo, XU Bin-bin, KAN Ying-nan. Failure mode analysis of computer numerical control machine tools based on fuzzy-DEA [J]. 吉林大学学报(工学版), 2013, 43(06): 1523-1528.
[8] CHENG Yu, ZHAO Hong-wei, LONG Man-li, LI Yu-cui. Improvement of earliest deadline first scheduling algorithm [J]. 吉林大学学报(工学版), 2013, 43(05): 1338-1342.
[9] SUN Xu, LI Chong, YANG Yin-sheng, YANG Jun. Efficiency measurement of mechanical production manufacturing process based on network DEA [J]. 吉林大学学报(工学版), 2012, 42(增刊1): 484-488.
[10] ZHANG Yong-jian, ZHONG Shi-sheng, WANG Ti-chun. Fuzzy group evaluation for design task quality based on decision maker weight [J]. , 2012, 42(04): 851-856.
[11] SU Li-li, WANG Deng-feng, CHEN Shu-ming, JIANG Ji-guang, WANG Qian. Subjective evaluation test of influence of color on vehicle interior sound quality [J]. , 2012, (03): 539-544.
[12] WANG Xuan-Feng, LIANG Ying-Chun, HUANG Chao-Sheng, YING Guo-Zeng. Load parameter optimization of brake test on statically
indeterminate multiaxle tractor
[J]. 吉林大学学报(工学版), 2011, 41(02): 316-0320.
[13] WANG Yan-min, WANG Chang-hong,FENG Yong. Sliding mode control of permanent magnet synchronous motor with inverter dead-time compensation [J]. 吉林大学学报(工学版), 2010, 40(04): 1096-1101.
[14] WANG Ruo-ping,LI Cheng-bin,ZHANG Bu-yang, WANG Guo-lin. Application of fractal model in road surface roughness reconstruction [J]. 吉林大学学报(工学版), 2010, 40(04): 991-0994.
[15] WANG Xu,CHEN Yong-gang,YANG Yin-sheng . DEA-DA model with interval numbers and its sensitivity analysis [J]. 吉林大学学报(工学版), 2009, 39(03): 716-0720.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!