Journal of Jilin University(Engineering and Technology Edition) ›› 2022, Vol. 52 ›› Issue (1): 91-100.doi: 10.13229/j.cnki.jdxbgxb20200715

Previous Articles     Next Articles

Buckling performance of variable stiffness composite cylindrical shells based on mode imperfections

Yu-xuan WEI1(),Ming ZHANG2(),Jia LIU1,Shuo LIU1,Ming-yu LU1,Hong-yu WANG1   

  1. 1.Beijing Satellite Manufacturing Factory Co. ,Ltd,Beijing 100094,China
    2.China Academy of Space Technology,Beijing 100094,China
  • Received:2020-09-16 Online:2022-01-01 Published:2022-01-14
  • Contact: Ming ZHANG E-mail:tjdavid001@163.com;nanwang20041208@sina.com

Abstract:

The buckling performance and imperfection sensitivity of variable stiffness cylindrical shells based on automatic placement technology are studied. Based on the tow shearing/refeeding technology, a simple algorithm that can accurately simulate the overlapping or defect area of the cylindrical shell surface is proposed to make the finite element model closer to the actual structure. A study was conducted on the effect of curved fiber layup on the buckling performance of cylindrical shells under combined loads. Combined with the Kriging model and genetic algorithm, the layup design method, in which the fiber angle changes linearly along the hoop direction and the axial direction, is optimized. The modified arc length method was used to analyze the imperfection sensitivity of composite stiffened cylindrical shells with different mode imperfections. The results show that under the combined action of axial pressure and uniform external pressure, the layering method, in which the fiber angle changes along the axial direction, can effectively improve the buckling performance of the structure. When the bandwidth is 25.4 mm,T0=80,T1=45, the buckling performance of the variable stiffness cylindrical shell is optimal, and the critical buckling load is increased by 70.9% and 34.5% compared to the reference configuration and to the constant stiffness optimal configuration. The imperfection sensitivity of the variable stiffness cylindrical shell is also improved compared to the quasi-isotropic layering method and to the optimal constant stiffness layering method. Variable stiffness design can make the cylindrical shell structure under combined load improve the structural buckling resistance and reduce the sensitivity to geometric imperfections.

Key words: composite materials, variable stiffness, buckling performance, mode imperfection, imperfection sensitivity

CLC Number: 

  • TB332

Fig.1

Linear change of fiber angle of cylindrical"

Fig.2

Schematic diagram of cylinder expansion"

Fig.3

Schematic diagram of fiber placement"

Fig.4

Fiber angle determination in the fiber tape"

Fig.5

Laying order of overlapping areas"

Fig.6

Judgment of fiber tape overlapping area under shear / refeed technology"

Fig.7

AFP detailed finite element model"

Fig.8

Kriging approximate model"

Table 1

Kriging model accuracy verification"

T0/(°T1/(°带宽50.8 mm带宽38.1 mm带宽25.4 mm
轴向K轴向FEA环向K环向FEA轴向K轴向FEA环向K环向FEA轴向K轴向FEA环向K

环向

FEA

206232 13032 14134 12634 18532 42332 41234 51434 47533 02733 03834 83434 957
101726 34026 17925 85825 79526 33126 20925 85625 79626 33926 21425 81725 801
606542 52043 56543 38543 99042 66843 97243 37044 63542 88444 35043 47245 386
743951 04449 45940 78140 40152 62351 09841 45640 93755 92754 22742 26941 663
461534 10134 32331 59231 50134 83335 07431 77031 81135 43035 79932 32632 148
emax/%3.21.43.02.83.34.2
eavg/%1.40.61.40.91.61.3
R20.990.990.990.990.990.98

Table 2

Optimization results of variable stiffness cylindrical shell"

带宽50.8 mm带宽38.1 mm带宽25.4 mm
轴向环向轴向环向轴向环向
T0/(°797780778077
T1/(°476147624561
Pcr53 24447 71655 82248 40460 28049 333
PcrFEA52 54647 29355 41247 83261 80648 775
e/%1.30.90.71.22.51.1

Fig.9

Optimization results of variable stiffness cylindrical shell"

Fig.10

Stress contour"

Table 3

Recommended parameters of geometric imperfection amplitude"

制造等级Un
Class A优秀0.010
Class B良好0.016
Class C普通0.025

Fig.11

Imperfect cylindrical shell with first eigenmode-shape imperfection(Un=0.1, scaled by 10.0)"

Fig.12

Load-displacement curve of nonlinear buckling of variable stiffness composite cylindrical shell"

Fig.13

Imperfection sensitivity curve"

1 刘书田, 陈秀华, 曹先凡,等. 夹芯圆柱壳稳定性优化[J]. 工程力学, 2005, 22(1): 135-140.
Liu Shu-tian, Chen Xiu-hua, Cao Xian-fan, et al. Optimization of buckling-prone cylindrical shells with porous material core[J]. Engineering Mechanics, 2005, 22(1): 135-140.
2 文立伟, 肖军, 王显峰, 等. 中国复合材料自动铺放技术研究进展[J]. 南京航空航天大学学报, 2015, 47(5): 637-649.
Wen Li-wei, Xiao Jun, Wang Xian-feng, et al. Process of automated placement technology for composites in china[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2015, 47(5): 637-649.
3 周晓芹, 曹正华. 复合材料自动铺放技术的发展及应用[J]. 航空制造技术, 2009, 42(s1): 1-3, 7.
Zhou Xiao-qin, Cao Zheng-hua. Development and application of automated placement technology for composites[J]. Aeronautical Manufacturing Technology, 2009, 42(s1): 1-3, 7.
4 Shirinzadeh B, Cassidy G, Oetomo D, et al. Trajectory generation for open-contoured structures in robotic fibre placement[J]. Robotics and Computer-Integrated Manufacturing, 2007, 23(4): 380-394.
5 Abdalla M M, Setoodeh S, Gürdal Z. Design of variable stiffness composite panels for maximum fundamental frequency using lamination parameters[J]. Composite Structures, 2007, 81(2): 283-291.
6 Hyer M W, Charette R F. Use of curvilinear fiber format in composite structure design[J]. AIAA Journal, 1991, 29(6): 1011-1015.
7 Rouhi M, Ghayoor H, Fortin-Simpson J, et al. Design, manufacturing, and testing of a variable stiffness composite cylinder[J]. Composite Structures, 2018, 184: 146-152.
8 叶辉, 李清原, 闫康康. 变刚度复合材料层合板的力学性能[J]. 吉林大学学报:工学版, 2020, 50(3):920-928.
Ye Hui, Li Qing-yuan, Yan Kang-kang. Mechanical properties of variable⁃stiffness carbon fiber composite laminates[J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(3):920-928.
9 Gürdal Z, Tatting B F, Wu C K. Variable stiffness composite panels: effects of stiffness variation on the in-plane and buckling response[J]. Composites Part A: Applied Science and Manufacturing, 2008, 39(5): 911-922.
10 Setoodeh S, Abdalla M M, Ijsselmuiden S T, et al. Design of variable-stiffness composite panels for maximum buckling load[J]. Composite Structures, 2009, 87(1): 109-117.
11 Blom A W, Stickler P B, Gürdal Z. Optimization of a composite cylinder under bending by tailoring stiffness properties in circumferential direction[J]. Composites Part B: Engineering, 2010, 41(2): 157-165.
12 Rouhi M, Ghayoor H, Hoa S V, et al. Multi-objective design optimization of variable stiffness composite cylinders[J]. Composites Part B: Engineering, 2015, 69: 249-255.
13 Nopour H, Kabiri A A, Shokrieh M M. Fiber path optimization in a variable-stifness cylinder to maximize its buckling load under external hydrostatic pressure[J]. Mechanics of Composite Materials, 2019, 54(6): 765-774.
14 Khani A, Abdalla M M, Gürdal Z. Optimum tailoring of fibre-steered longitudinally stiffened cylinders[J]. Composite Structures, 2015, 122: 343-351.
15 孙士平, 张冰, 邓同强, 等. 复合载荷作用变刚度复合材料回转壳屈曲优化[J]. 复合材料学报, 2019, 36(4): 1052-1061.
Sun Shi-ping, Zhang Bing, Deng Tong-qiang, et al. Buckling optimization of variable stiffness composite rotary shell under combined loads[J]. Acta Materiae Compositae Sinica, 2019, 36(4): 1052-1061.
16 钟继凡. 基于代理模型的变刚度复合材料结构优化设计[D]. 武汉:华中科技大学航空航天学院, 2018.
Zhong Ji-fan. Optimization design of variable stiffness composite structurres based on meta-models[D]. Wuhan: Huazhong University of science and Technology School of Aerospace Engineering, 2018.
17 闫光, 韩小进, 闫楚良,等. 含口盖复合材料圆柱壳轴压屈曲性能分析[J]. 吉林大学学报:工学版, 2015, 45(1): 187-192.
Yan Guang, Han Xiao-jin, Yan Chu-liang, et al. Buckling analysis of composite cylindrical shell with cover under axial compressive load[J]. Journal of Jilin University(Engineering and Technology Edition), 2015, 45(1): 187-192.
18 Arbelo M A, Degenhardt R, Castro S G P, et al. Numerical characterization of imperfection sensitive composite structures[J]. Composite Structures, 2014, 108: 295-303.
19 Zimmermann R. Buckling research for imperfection tolerant fiber composite structures[C]∥Conference on Spacecraft Structures Materials & Mechanical Testing Noordwijk,Niederlande, 1996:27-29.
20 Kim B C, Hazra K, Weaver P M, et al. Limitations of fibre placement techniques for variable angle tow composites and their process-induced defects[C]∥The 18th International Conference on Composite Materials, Jeju, Korea, 2011: 109-117.
21 Acar E, Guler M A, Gereker B, et al. Multi-objective crashworthiness optimization of tapered thin-walled tubes with axisymmetric indentations[J]. Thin-Walled Structures, 2011, 49(1): 94-105.
22 卫宇璇, 张明, 刘佳, 等. 基于自动铺放技术的高精度变刚度复合材料层合板屈曲性能[J]. 复合材料学报, 2020, 37(11):2807-2815.
Wei Yu-xuan, Zhang Ming, Liu Jia, et al. Buckling performance of high-precision variable stiffness composites laminate based on automatic placement technology[J]. Acta Materiae Compositae Sinica, 2020, 37(11):2807-2815.
23 EN1993-1-1. Eurocode 3-Design of Steel Structures[S].
[1] Fan YANG,Xu-dong ZHANG,Meng ZHAO,Bo SHE,Jun-kai DENG. Deformation behavior of shape memory alloy-metallic glass matrix composites based on finite element calculations [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1): 172-180.
[2] HU Zhi-qing, ZHENG Hui-hui, XU Ya-nan, ZHANG Chun-ling, DANG Ting-ting. Effect of Al surface with micro/macro grooves on Al/CFRP adhesive-bonded joints [J]. 吉林大学学报(工学版), 2018, 48(1): 229-235.
[3] WANG Jun-nian, YE Tao, SUN Wen, WANG Qing-nian. Vibration isolation performance of energy-regenerative semi-active suspension with variable stiffness and damping [J]. 吉林大学学报(工学版), 2017, 47(3): 701-708.
[4] LIU Li-ping, LIU Yong-bing, JI Lian-feng, CAO Zhan-yi, YANG Xiao-hong. Flow stress behavior of in situ particulate reinforced titanium atrix composite at elevated temperature [J]. 吉林大学学报(工学版), 2016, 46(4): 1197-1201.
[5] YAN Guang, HAN Xiao-jin, YAN Chu-liang,ZHU Lian-qing. Buckling analysis of composite cylindrical shell with cover under axial compressive load [J]. 吉林大学学报(工学版), 2015, 45(1): 187-192.
[6] LU Guang-lin, QIU Xiao-ming, BAI Yang, LUN Xin-jie|DENG Bao-qing,REN Lu-qu. Microstructure and performance of c-BN bionic wearresistant composites [J]. 吉林大学学报(工学版), 2011, 41(01): 73-0077.
[7] SUN Liang,WANG Jun,HAN Ping-chou . Electrospinned PCL nanofiber and its diameter measurement correction [J]. 吉林大学学报(工学版), 2008, 38(06): 1305-1309.
[8] ZHANG Xiao-ming, WANG Hong-yan, LI Jun-feng . Preparation of bone repair material of modified-MWNTs/nano-HA/PLA
[J]. 吉林大学学报(工学版), 2008, 38(04): 844-847.
[9] Li Hong-ji, He Ran, Zhang Wan-xi, Sun Guo-en, Zhang Li, Niu Yong-sheng . Preparation and properties of nanoTiO2/EVA composites [J]. 吉林大学学报(工学版), 2006, 36(05): 710-0714.
[10] SUN Guoen, ZHANG Li, LI Hongji, ZHANG Chunling, LIANG Jicai, ZHANG Wanxi. Structure and Properties of EVA/Al2O3 Nanocomposite Materials [J]. 吉林大学学报(工学版), 2005, 35(06): 577-0581.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!