Journal of Jilin University(Engineering and Technology Edition) ›› 2021, Vol. 51 ›› Issue (1): 172-180.doi: 10.13229/j.cnki.jdxbgxb20190869

Previous Articles    

Deformation behavior of shape memory alloy-metallic glass matrix composites based on finite element calculations

Fan YANG1(),Xu-dong ZHANG1(),Meng ZHAO2,Bo SHE1,Jun-kai DENG2   

  1. 1.Network Information Center,Xi'an Jiaotong University,Xi'an 710049,China
    2.State Key Laboratory for Mechanical Behavior of Materials,Xi'an Jiaotong University,Xi'an 710049,China
  • Received:2019-09-07 Online:2021-01-01 Published:2021-01-20
  • Contact: Xu-dong ZHANG E-mail:yangfan@xjtu.edu.cn;xdzhangxjtu@163.com

Abstract:

The influence of tensile-unloading pre-strains on the mechanical behavior of shape memory alloy-metal glass composites and its internal mechanism were studied by finite element simulations. Simulation results show that both the yield strength and the limit of the elastic strain of the composites increase with the pretreatment strain, but the tensile ductility decreases sharply. With increasing pretreatment strain, the subsequent deformation of shape memory alloy particles shifts from a classic martensite phase transformation to a continuous martensite transformation, and finally to a simple martensite elastic deformation. The weakening or even disappearance of the phase transformation effect leads directly to the deterioration in the tensile performance of the pretreated shape memory alloy-metallic glass matrix composite.

Key words: composite materials, metallic glass, shape memory alloy, martensite phase transformation, pretreatment, finite element method

CLC Number: 

  • TB331

Fig.1

Finite element models of SMA-MG composites"

Fig.2

Statistical distributions of initial free volume within MG matrix"

Table 1

Material coefficients for MG matrix"

材料参数数值

初始自由体积 v0

弹性模量 E/MPa

0.05

95 000

泊松比 v0.33
原子跳跃次数 nD3
几何系数 α0.21
原子体积比 β1
参考应力 σ0/MPa89

Table 2

Material coefficients for SMA particles"

材料参数数值
奥氏体弹性模量 EA/MPa65 000
马氏体弹性模量 EM/MPa30 000
马氏体相变起始应力σsAM/MPa450
马氏体相变结束应力 σfAM/MPa1 000
逆相变起始应力 σsMA/MPa500
逆相变结束应力 σfMA/MPa50
相变应变 εL0.045

Fig.3

Tensile stress-strain curves of MG matrix and SMA particles"

Fig.4

Comparison between experimental and simulated results for the SMA-MG composites with different volume fractions of the SMA particles"

Fig.5

Free volume distribution in the MG matrices reinforced by SMA particles with different volume fractions"

Fig.6

Effect of pretreatment strains on the tensile performances of the SMA-MG composites"

Fig.7

Evolution of average volume fraction of martensite phase during the pretreatment"

Fig.8

Evolution of shear bands wthin MG matrix during the second loading process after a prestrain of 6.5%"

Fig.9

Evolution of average volume fraction of martensite phase during the pretreatment"

Fig.10

Evolution of average volume fraction of martensite phase during the subsequent loading process"

Fig.11

Effect of pretreatment strains on subsequent deformation of SMA particles"

Fig.12

Deformational behaviors of SMA particles"

Fig.13

Tensile stress-strain curves of BMG and SMA-MG composites"

Fig.14

Evolution of average free volume within BMG and MG matrices during tensile process"

1 Pauly S, Gorantla S, Wang G, et al. Transformation-mediated ductility in CuZr-based bulk metallic glasses[J]. Nature Materials, 2010, 9(6): 473-477.
2 Hofmann D C, Suh J Y, Wiest A, et al. Designing metallic glass matrix composites with high toughness and tensile ductility[J]. Nature, 2008, 451(7182): 1085-1089.
3 Baran Sarac, Jan Schroers. Designing tensile ductility in metallic glasses[J]. Nature Communications, 2013, 4: 2158.
4 Wang Y, Li M, Xu J. Toughen and harden metallic glass through designing statistical heterogeneity[J]. Scripta Materialia, 2016, 113: 10-13.
5 Gargarella P, Pauly S, Song K K, et al. Ti-Cu-Ni shape memory bulk metallic glass composites[J]. Acta Materialia, 2013, 61 (1): 151-162.
6 Wu Y, Xiao Y, Chen G, et al. Bulk metallic glass composites with transformation-mediated work-hardening and ductility[J]. Advanced Materials, 2010, 22(25): 2770-2773.
7 Hofmann D C. Shape memory bulk metallic glass composites[J]. Science, 2010, 329(5997): 1294-1295.
8 Qiao J. In-situ dendrite/metallic glass matrix composites: a review[J]. Journal of Materials Science & Technology, 2013, 29(8): 685-701.
9 Hao S, Cui L, Jiang D, et al. A transforming metal nanocomposite with large elastic strain, low modulus, and high strength[J]. Science, 2013, 339(6124): 1191-1194.
10 Wu F F, Chan K C, Jiang S, et al. Bulk metallic glass composite with good tensile ductility, high strength and large elastic strain limit[J]. Scientific Reports, 2014, 4: 5302.
11 Wei R, Chang Y, Li Y F, et al. Effect of lateral pre-compression on the compressive behavior of a CuZr-based bulk metallic glass composite containing B2-CuZr phase[J]. Materials Science and Engineering: A, 2013, 587: 233-239.
12 Jiang Y, Shi X, Qiu K. Numerical study of shear banding evolution in bulk metallic glass composites[J]. Materials & design, 2015, 77: 32-40.
13 Sarac B, Wilmers J, Bargmann S. Property optimization of porous metallic glasses via structural design[J]. Materials Letters, 2014, 134: 306-310.
14 Jiang Y, Qiu K. Computational micromechanics analysis of toughening mechanisms of particle-reinforced bulk metallic glass composites[J]. Materials & Design, 2015, 65: 410-416.
15 Wang Y, Li M, Xu J. Mechanical properties of spinodal decomposed metallic glass composites[J]. Scripta Materialia, 2017, 135: 41-45.
16 Zhang X, Ren J, Ding X. Synergistic effects among the structure, martensite transformation and shear band in a shape memory alloy-metallic glass composite[J]. Applied Composite Materials, 2019, 26: 455-467.
17 Rao W, Kang G, Zhang J, et al. Numerical study on toughening mechanism of bulk metallic glass composites from martensite transformation of toughening phase[J]. Journal of Non Crystalline Solids, 2019, 506: 88-97.
18 Wu Y, Wang H, Wu H H, et al. Formation of Cu-Zr-Al bulk metallic glass composites with improved tensile properties[J]. Acta Materialia, 2011, 59: 2928-2936.
19 Jiang Y, Sun L, Wu Q, et al. Enhanced tensile ductility of metallic glass matrix composites with novel microstructure[J]. Journal of Non Crystalline Solids, 2017, 459: 26-31.
20 Jiang Y. Numerical modeling of cyclic deformation in bulk metallic glasses[J]. Metals, 2016, 6(9): 217.
21 Pauly S, Liu G, Wang G, et al. Modeling deformation behavior of Cu-Zr-Al bulk metallic glass matrix composites[J]. Applied Physics Letters, 2009, 95(10): 101906.
22 Auricchio F, Taylor R. Shape-memory alloys: modelling and numerical simulations of the finite-strain superelastic behavior[J]. Computer Methods in Applied Mechanics and Engineering, 1997, 143(1/2): 175-194.
23 Lei H, Wang Z, Zhou B, et al. Simulation and analysis of shape memory alloy fiber reinforced composite based on cohesive zone model[J]. Materials & Design, 2012, 40: 138-147.
24 Lei H, Wang Z, Tong L, et al. Experimental and numerical investigation on the macroscopic mechanical behavior of shape memory alloy hybrid composite with weak interface[J]. Composite Structures, 2013, 101: 301-312.
25 Şopu D, Soyarslan C, Sarac B, et al. Structure-property relationships in nanoporous metallic glasses[J]. Acta Materialia, 2016, 106: 199-207.
26 Kumar G, Rector D, Conner R D, et al. Embrittlement of Zr-based bulk metallic glasses[J]. Acta Materialia, 2009, 57 (12): 3572-3583.
27 Chen L Y, Fu Z D, Zhang G Q, et al. New class of plastic bulk metallic glass[J]. Physical Review Letters, 2008, 100 (7): 075501.
28 Gao Y F. An implicit finite element method for simulating inhomogeneous deformation and shear bands of amorphous alloys based on the free-volume model[J]. Modelling and Simulation in Materials Science and Engineering, 2006, 14(8): 1329-1345.
[1] Xin LI,Yan-peng SUN,Dan WANG,Jun-xu CHEN,Zheng-wei GU,Hong XU. Finite element numerical simulation for automobile front floor forming [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1608-1614.
[2] Chun-zheng DUAN,Fang-yuan ZHANG,Wen-neng KOU,Bin WEI. Martensitic transformation of surface white layer in high speed hard cutting [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1575-1583.
[3] Xiao⁃qin ZHOU,Lu YANG,Lei ZHANG,Li⁃jun CHEN. Finite element analysis of hinging octahedron structure withnegative compressibility [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 865-871.
[4] BI Qiu-shi,WANG Guo-qiang,HUANG Ting-ting,MAO Rui,LU Yan-peng. Tooth strength analysis of mineral sizer by coupling discrete element method and finite element method [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1770-1776.
[5] HU Zhi-qing, ZHENG Hui-hui, XU Ya-nan, ZHANG Chun-ling, DANG Ting-ting. Effect of Al surface with micro/macro grooves on Al/CFRP adhesive-bonded joints [J]. 吉林大学学报(工学版), 2018, 48(1): 229-235.
[6] WANG Jing-yu, YU Xu-tao, HU Xing-jun, GUO Peng, XIN Li, GUO Feng, ZHANG Yang-hui. Fluid-induced vibration and flow mechanism of automotive external rearview mirror [J]. 吉林大学学报(工学版), 2017, 47(6): 1669-1676.
[7] SUN Rong-jun, GU Shuan-cheng, JU Pei, GAO Ke. Optimal design of new arc angle PDC drill bit for coal mining based on finite element method [J]. 吉林大学学报(工学版), 2017, 47(6): 1991-1998.
[8] LIU Yu, LI Peng-fei, ZHANG Yi-min. Analysis and prediction of micro milling deformation of copper thin-wall parts [J]. 吉林大学学报(工学版), 2017, 47(3): 844-849.
[9] ZHANG Yun-long, LIU Zhan-ying, WU Chun-li, WANG Jing. Static and dynamic responses of steel-concrete composite beams [J]. 吉林大学学报(工学版), 2017, 47(3): 789-795.
[10] LIU Cheng, SHI Wen-ku, CHEN Zhi-yong, HE Wei, RONG Ru-song, SONG Huai-lan. Experiment on tooth root bending stress of driving axle hypoid gear of automobile [J]. 吉林大学学报(工学版), 2017, 47(2): 344-352.
[11] YAN Guang, ZHUANG Wei, LIU Feng, ZHU Lian-qing. Preload package and characteristics of a sensitizing effect sensor based Fiber Bragg Grating (FBG) [J]. 吉林大学学报(工学版), 2016, 46(5): 1739-1745.
[12] LIU Li-ping, LIU Yong-bing, JI Lian-feng, CAO Zhan-yi, YANG Xiao-hong. Flow stress behavior of in situ particulate reinforced titanium atrix composite at elevated temperature [J]. 吉林大学学报(工学版), 2016, 46(4): 1197-1201.
[13] LIU Han-bing, SHI Cheng-lin, TAN Guo-jin. Finite element solution of composite beam with effect of shear slip [J]. 吉林大学学报(工学版), 2016, 46(3): 792-797.
[14] ZHUANG Ye, CHEN Yu-hang, YANG Ye-hai, XU Shu-fang. Twin-tube hydraulic shock absorber F-V modeling based on structure parameters [J]. 吉林大学学报(工学版), 2016, 46(3): 732-736.
[15] XIAO Xiang, HUANG En-hou, NI Ying-sheng. Theoretical analysis and experiment of the effect of flange width on beam-plates system of prestressed concrete [J]. 吉林大学学报(工学版), 2015, 45(6): 1784-1790.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!