Journal of Jilin University(Engineering and Technology Edition) ›› 2022, Vol. 52 ›› Issue (11): 2558-2567.doi: 10.13229/j.cnki.jdxbgxb20210267

Previous Articles    

Automatic driving strategy of high⁃speed lane changing in snowy weather based on typical accident scenarios

Tao PENG1,2(),Rui FANG2,Xing-liang LIU2,Hai-wei WANG3(),Yan-wei PANG1,Hong-guo XU4,Fu-ju LIU2,Tao WANG5   

  1. 1.School of Electrical and Information Engineering,Tianjin University,Tianjin 300072,China
    2.China Automotive Technology and Research Center Co. ,Ltd. ,Tianjin 300300,China
    3.School of Transportation and Economic Management,Guangdong Communication Polytechnic,Guangzhou 510650,China
    4.College of Transportation,Jilin University,Changchun 130022,China
    5.College of Automobile and Transportation,Tianjin University of Technology and Education,Tianjin 300222,China
  • Received:2021-03-30 Online:2022-11-01 Published:2022-11-16
  • Contact: Hai-wei WANG E-mail:pengtao@tute.edu.cn;whw2046@126.com

Abstract:

In order to improve the safety of vehicle lane changing on highway in snowy weather, an environment adaptive automatic driving strategy for high-speed safe lane changing of intelligent vehicle was proposed. Based on the typical case of high-speed lane changing traffic accidents, the dynamic mechanism of vehicle instability caused by environment was analyzed, and the lane changing trajectory model was constructed by using Gaussian distribution. Then taking the space-time situation and stability of safe lane changing as constraints, by using decision tree and hierarchical weighted score, a method of cooperative safe lane changing decision and path planning for different driving modes was proposed. Based on the hardware in the loop simulation test platform of intelligent vehicle built by Prescan/Simulink, the traffic accident scene of high-speed lane change of snowy vehicles was used to verify the automatic driving strategy of vehicles on the low attachment road. The simulation results show that the proposed safe lane change decision and path planning mechanism, with vehicle road cooperation, can better ensure the safety and the environmental adaptability of intelligent vehicles, which can provide a reference for the development of intelligent driving decision system.

Key words: engineering communication and transportation safety, automatic driving strategy, snow weather, high-speed lane changing, decision planning, vehicle road cooperation

CLC Number: 

  • U469.2

Fig.1

Road surface and conditions at accident site"

Fig.2

Collision status between rear and front vehicles"

Table 1

Related parameters involved in traffic accidents"

车辆参 数数值
客车宽度B0/m2.54
质心至前轴距离b/m2.10
后悬b'/m3.28
货车宽度B1/m2.50

Table 2

Maximum acceleration and minimum safety distance of vehicle under different working conditions"

工况初始车速 /(m·s-1弯道半径/m制动减速度 /(m·s-2概率系数转向频率/Hz

a0max

/(m·s-2

φctmax

/rad

SYctpm

/m

tp/s

VX0tp

/(m·s-1

SX0m/mSX1m/mSX2m/m
恒速27.7825102.250.100.54280.02742.66707.001227.78204.493319.731718.3818
0.150.79980.03962.73235.063227.78150.655717.037816.2307
0.201.12340.05102.79284.096027.78123.786915.693415.1571
0.251.49880.06162.84903.516927.78107.699514.888514.5143
0.301.91410.07152.90133.097627.7896.051314.305714.0488
制动27.7825100.52.250.100.73800.03042.68287.074925.08195.897119.024618.4636
0.150.94320.04252.74755.129625.91147.257117.894616.3044
0.201.22970.05392.80764.158826.33122.275616.545215.2268
0.251.58000.06452.86373.577826.58107.099315.737614.5819
0.301.97830.07442.91593.191526.7596.915515.200714.1531
12.250.101.13780.03412.70277.105922.33185.582910.000018.6632
0.151.28050.04592.76555.149524.00142.244213.506716.4427
0.201.50400.05712.82484.174024.83119.204614.854615.3355
0.251.80180.06762.88043.590425.33104.966015.206014.6731

Fig.3

Decision tree for vehicle lane changing"

Table 3

Path planning scoring table for autonomous vehicle obstacle avoidance of high-speed lane change in snowy"

层次性能f/a最大加速度/(m·s-2最小安全距离/m

评价

参数

分值
1总体s1=s2×(i×s3+j×s4
2安全

aiamax

i=0,1,2)

SXiSXim

i=0,1,2)

ai

SXi

s2=1(SXi-SXim>0)
s2=0(SXi-SXim≤0)
3舒适0.10/00.5428204.4933a0maxs3=10
0.10/0.50.7380195.8971s3=9
0.15/00.7998150.6557s3=8
0.15/0.50.9432147.2571s3=7
0.20/01.1234123.7869s3=6
0.10/11.1378185.5829s3=5
0.20/0.51.2297122.2756s3=4
0.15/11.2805142.2442s3=3
0.25/01.4988107.6995s3=2
0.20/11.5040119.2046s3=1
0.25/0.51.5800107.0993s3=0.5
4效率0.25/0.51.5800107.0993SX0ms4=10
0.25/01.4988107.6995s4=9
0.20/11.5040119.2046s4=8
0.20/0.51.2297122.2756s4=7
0.20/01.1234123.7869s4=6
0.15/11.2805142.2442s4=5
0.15/0.50.9432147.2571s4=4
0.15/00.7998150.6557s4=3
0.10/11.1378185.5829s4=2
0.10/0.50.7380195.8971s4=1
0.10/00.5428204.4933s4=0.5

Table 4

Path planning modes for autonomous vehicle obstacle avoidance of high-speed lane change in snowy"

模式应用条件转向频率/Hz/ 制动减速度/(m·s-2分数

优化驾驶策略

转向频率/(Hz)/

制动减速度/(m·s-2

1SX02000.10/0.56.90.10/0.5
0.15/06.8
0.15/0.56.1
0.20/06.0
0.20/0.54.9
0.10/14.1
0.25/04.1
0.15/13.6
0.20/13.1
0.25/0.53.35
0.10/00
2170SX0<2000.15/06.80.15/0
0.15/0.56.1
0.20/06.0
0.20/0.54.9
0.25/04.1
0.15/13.6
0.20/13.1
0.25/0.53.35
0.10/00
0.10/0.50
0.10/10
3140SX0<1700.20/06.00.20/0
0.20/0.54.9
0.25/04.1
0.20/13.1
0.25/0.53.35
0.10/00
0.10/0.50
0.10/10
0.15/00
0.15/0.50
0.15/10
4108SX0<1400.25/04.10.25/0
0.25/0.53.35
0.10/00
0.10/0.50
0.10/10
0.15/00
0.15/0.50
0.15/10
0.20/00
0.20/0.50
0.20/10
5SX0<108危险

Table 5

Scene definition parameters for autonomous vehicle of high-speed lane change"

车辆决策反应时间/s(制动/加速 延迟时间)/s侧向运动 延迟时间/s初始速度 /(m·s-1初始加速度 /(m·s-2距离/m
自动驾驶汽车0.50.050.427.780

SX0=120

SX1=20

SX2=20

原车道前车00
目标车道前车0.50.05250
目标车道后车0.50.05300

Fig.4

Change diagram of steering wheel angle during vehicle lane change to avoid collision"

Fig.5

Vehicle lateral position"

Fig.6

Vehicle longitudinal position"

Fig.7

Change of vehicle longitudinal speed"

Fig.8

Process for autonomous vehicle collision avoidance of high-speed lane change"

1 Jonathan J R, Shirley R, Salissou M, et al. What are the factors that contribute to road accidents? an assessment of law enforcement views, ordinary drivers' opinions, and road accident records[J]. Accident Analysis & Prevention, 2018, 115: 11-24.
2 张荣辉, 游峰, 初鑫男, 等. 车-车协同下无人驾驶车辆的换道汇入控制方法[J]. 中国公路学报, 2018, 31(4): 180-191.
Zhang Rong-hui, You Feng, Chu Xin-nan, et al. Lane change merging control method for unmanned vehicle under V2V cooperation environment[J]. China Journal of Highway and Transport, 2018, 31(4): 180-191.
3 陈虹, 申忱, 郭洪艳, 等. 面向动态避障的智能汽车滚动时域路径规划[J]. 中国公路学报, 2019, 32(1): 162-172.
Chen Hong, Shen Chen, Guo Hong-yan, et al. Moving Horizon path planning for intelligent vehicle considering dynamic obstacle avoidance[J]. China Journal of Highway and Transport, 2019, 32(1): 162-172.
4 Gipps P G. A model for the structure of lane-changing decisions[J]. Transportation Research, Part B, 1986, 20(5): 403-414.
5 Ratrout N T, Rahman S M. A comparative analysis of currently used microscopic and macroscopic traffic simulation software[J]. The Arabian Journal for Science and Engineering, 2009, 34(1): 121-133.
6 黄玲, 郭亨聪, 张荣辉, 等. 人机混驾环境下基于LSTM的无人驾驶车辆换道行为模型[J]. 中国公路学报, 2020, 33(7): 156-166.
Huang Ling, Guo Heng-cong, Zhang Rong-hui, et al. LSTM-based lane-changing behavior model for unmanned vehicle under environment of heterogeneous human-driven and autonomous vehicles[J]. China Journal of Highway and Transport, 2020, 33(7): 156-166.
7 Lecun Y, Cosatto E, Ben J, et al. Dave: autonomous off-road vehicle control using end-to-end learning[R]. Courant Institute, New York University, USA:Technical Report DARPA-IPTO Final Report, 2004.
8 杨顺, 蒋渊德, 吴坚, 等. 基于多类型传感数据的自动驾驶深度强化学习方法[J]. 吉林大学学报: 工学版, 2019, 49(4): 1026-1033.
Yang Shun, Jiang Yuan-de, Wu Jian, et al. Autonomous driving policy learning based on deep reinforcement learning and muti-type sensor data[J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1026-1033.
9 Ngai D C K, Yung N H C. A multiple-goal reinforcement learning method for complexvehicle overtaking maneuvers[J]. IEEE Transactions on Intelligent Transportation Systems, 2011, 12(2): 509-522.
10 Matthew M N, Chris U, Jhon M D, et al. Motion planning for autonomous driving with a conformal spatiotemporal lattice[C]∥IEEE International Conference on Robotics and Automation, Shanghai, China, 2011: 4889-4895.
11 Zhang F, Gonzales J, Li S E, et al. Drift control for cornering maneuver of autonomous vehicles[J]. Mechatronics, 2018, 54: 167-174.
12 Nurbaiti W, Hairi Z, Mohd A A R, et al. Study on potential field based motion planning and control for automated vehicle collision avoidance systems[C]∥IEEE International Conference on Mechatronics, Churchill, Australia, 2017: 208-213.
13 孙浩, 邓伟文, 张索民, 等. 考虑全局最优性的汽车微观动态轨迹规划[J]. 吉林大学学报: 工学版, 2014, 44(4): 918-924.
Sun Hao, Deng Wei-wen, Zhang Suo-min, et al. Micro vehicle dynamic trajectory plan with global optimality[J]. Journal of Jilin University(Engineering and Technology Edition), 2014, 44(4): 918-924.
14 夏小云, 周育人. 蚁群优化算法的理论研究进展[J]. 智能系统学报, 2016, 11: 9-16.
Xia Xiao-yun, Zhou Yu-ren. Advances in theoretical research of ant colony optimization[J]. CAAI Transactions on Intelligent Systems, 2016, 11: 9-16.
15 Muller U, Ben J, Cosatto E, et al. Off­road obstacle avoidance through end­to­end learning[C]∥Advances in Neural Information Processing Systems, Vancouver, Canada, 2006: 739­746.
[1] Jia-xu ZHANG,Xin-zhi WANG,Jian ZHAO,Zheng-tang SHI. Path planning and discrete sliding mode tracking control for high⁃speed lane changing collision avoidance of vehicle [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 1081-1090.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!