Journal of Jilin University(Engineering and Technology Edition) ›› 2022, Vol. 52 ›› Issue (12): 3006-3014.doi: 10.13229/j.cnki.jdxbgxb20210456

Previous Articles     Next Articles

Analysis of acoustic⁃to⁃seismic coupling landmine detection technology based on parametric acoustic array

Chi WANG1,2(),Xin-yu LUO1,Chao WANG1,He-jun JIANG2,Chao-peng LUO2()   

  1. 1.School of Mechatronic Engineering and Automation,Shanghai University,Shanghai 200444,China
    2.Science and Technology on Near-surface Detection Laboratory,Wuxi 214035,China
  • Received:2021-05-24 Online:2022-12-01 Published:2022-12-08
  • Contact: Chao-peng LUO E-mail:wangchi@shu.edu.cn;chaopengluo59103@163.com

Abstract:

The acoustic-to-seismic coupling landmine detection system based on a parametric acoustic array was constructed to study the application method of the parametric acoustic array in acoustic landmine detection technology. Based on the theory of acoustic-to-seismic coupling landmine detection, the parametric acoustic array was used as an acoustic energy source to excite the surface vibration which can be detected by an accelerometer. The three-dimensional characteristic maps of surface vibration under different types of landmines and buried soil conditions were constructed. The experimental results show that the acoustic-to-seismic coupling efficiency of the soil above the landmine is obviously better than that of the bricks and other disturbances, and it is affected by the type of the landmine and the surrounding soil conditions, which indicates that the parametric acoustic array can be used for further research on the development of acoustic landmine detection engineering system.

Key words: precision instrument and machinery, acoustic landmine detection, parametric acoustic array, acoustic-to-seismic coupling, nonmetallic landmine

CLC Number: 

  • TB51

Fig.1

Schematic diagram of nonlinear effects of sound waves"

Fig.2

Schematic diagram of acoustic-to-seismic coupling and landmine resonance"

Fig.3

Schematic diagram of acoustic-to-seismic coupling landmine detection system"

Fig.4

Acoustic-to-seismic coupling landmine detection experimental system"

Fig.5

Experimental results at burial depth of 2 cm"

Fig.6

Schematic diagram of grid division of experimental area"

Fig.7

Surface vibration scanning detection results with buried depth of 2 cm"

Fig.8

Surface vibration detection results with different buried depth"

Fig.9

Surface vibration detection results with different soil porosity"

Fig.10

Surface vibration detection results with different soil moisture"

1 Li Hong-yu, Wang Yi-jia, Chang Hong-wei, et al. Acoustic impedance and its application in seismo-acoustic landmines detection models[J]. Journal of Coastal Research, 2020, 99(Sup.1): 92-98.
2 Wu Zhi-qiang, Duan Nai-yuan, Wang Chi, et al. Experimental study on acoustic-to-seismic landmine detection based on laser self-mixing interferometer[C]∥Sixth International Conference on Optical and Photonic Engineering, Shanghai: Proceedings of SPIE, 2018: No.10827.
3 丁卫, 吴文雯, 王驰, 等. 用非饱和三相孔弹模型研究浅层土壤中地震波的传播特性[J]. 物理学报, 2014, 63(22): 204-212.
Ding Wei, Wu Wen-wen, Wang Chi, et al. Application of unsaturated three-phase pore-shell model to the study of seismic wave propagation characteristics in shallow soil[J]. Acta Physica Sinica, 2014, 63(22): 204-212.
4 Mao Xi, Li Ge-qiang, Wang Chi, et al. Experimental study of acoustic resonance technology for nonmetallic mines detection[J]. Przeglad Elektrotechniczny, 2012, 88(9b): 162-165.
5 Martin J S, Larson G D, Scott W R. An investigation of surface-contacting sensors for the seismic detection of buried landmines[J]. The Journal of Acoustical Society of America, 2006, 120(5): 2676-2685.
6 Gan W S, Yang J, Kamakura T. Parametric acoustic array: theory, advancement, and applications[J]. Applied Acoustics, 2012, 73(12): 1209-1210.
7 周爱国, 阮杰阳, 刘凯, 等. 超声波流量计影响因素的分析及对策[J]. 中国工程机械学报, 2009, 7(4): 469-473.
Zhou Ai-guo, Ruan Jie-yang, Liu Kai, et al. Analysis and strategy for impacts on ultrasonic flowmeters[J]. Chinese Journal of Construction Machinery, 2009, 7(4): 469-473.
8 Gan W S, Yang J, Kamakura T. A review of parametric acoustic array in air[J]. Applied Acoustics, 2012, 73(12): 1211-1219.
9 Zhou H Y, Huang S H, Li W. Parametric acoustic array and its application in underwater acoustic engineering[J]. Sensors, 2020, 20(7): No.2148.
10 Esipov I B, Naugolnykh K, Timoshenko V. The parametric array and long-range ocean research[J]. Acoustics Today, 2010, 6(2): 20-26.
11 Yin Jing-wei, Zhang Xiao, Zhou Yi-ming. Differential pattern time delay shift coding underwater acoustic communication using parametric array[J]. The Journal of the Acoustical Society of America, 2015, 137(4): No. 2214.
12 Qu Ke, Zou Bin-bin, Chen Jing-jing, et al. Experimental study of a broadband parametric acoustic array for sub-bottom profiling in shallow water[J]. Shock and Vibration, 2018, 2018: No. 3619257.
13 汤惠, 杨文旭, 陈飞洋, 等. 声频定向系统超声换能器频率特性及匹配[J].电声技术, 2016, 40(5): 35-39.
Tang Hui, Yang Wen-xu, Chen Fei-yang, et al. Frequency characteristics and matching of ultrasonic transducer in audio frequency directing system[J]. Audio Engineering, 2016, 40(5): 35-39.
14 Nakashima Y, Ohya T, Yoshimura T. Prototype of parametric array loudspeaker on mobile phone and its acoustical characteristics[J]. Audio Engineering Society, 2005, 118: No.6521.
15 Wang Chi, Xie Yu-lai, Li Xing-fei, et al. Analysis of acoustic to seismic coupling technique for buried landmines detection[J]. Chinese Journal of Acoustics, 2009, 28(2): 137-145.
16 Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous solid I: low-frequency range[J]. The Journal of Acoustical Society of America, 1956, 28(2): 168-178.
17 Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous solid Ⅱ: higher frequency range[J]. The Journal of Acoustical Society of America, 1956, 28(2): 179-191.
18 Xiang N, Sabatier J. Applications of acoustic-to-seismic coupling for landmine detection[J/OL]. [2021-01-02].
19 王驰, 刘志刚, 李醒飞, 等. 基于相对声-地震耦合率的声波探雷技术[J]. 天津大学学报, 2008(6): 745-750.
Wang Chi, Liu Zhi-gang, Li Xing-fei, et al. Technology for acoustic landmine detection based on relative acoustic-to-seismic coupling ratio[J]. Journal of Tianjin University, 2008(6): 745-750.
20 Haupt R W, Rolt K. Standoff acoustic laser technique to locate buried land mines[J]. Lincoln Laboratory Journal, 2005, 15: 3-22.
21 丁卫, 沈高炜, 王驰, 等. 用于非金属地雷探测的声-地震耦合识别方法[J]. 光学精密工程, 2014, 22(5): 1331-1338.
Ding Wei, Shen Gao-wei, Wang Chi, et al. Acoustic-to-seismic coupling based discrimination for non-metallic detection[J]. Optics and Precision Engineering, 2014, 22(5): 1331-1338.
22 王驰, 马辉, 李金辉, 等. 激光自混合测振技术在声共振探雷实验中的应用[J]. 光学精密工程, 2021, 29(4): 710-720.
Wang Chi, Ma Hui, Li Jin-hui, et al. Application of laser self-mixing vibration measurement technique in acoustic resonance landmine detection[J]. Optics and Precision Engineering, 2021, 29(4): 710-720.
23 李金辉, 马辉, 杨辰烨, 等. 用于声-地震耦合探雷 的激光测振技术研究进展[J]. 中国光学, 2021, 14(3): 487-502.
Li Jin-hui, Ma Hui, Yang Chen-ye, et al. Research progress of the laser vibration measurement techniques for acoustic-to-seismic coupling landmine detection[J]. Chinese Optics, 2021, 14(3): 487-502.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] AN Shi, LI Jing, CUI Na . Simulation of commuter day-to-day dynamic route switching behavior under ATIS information[J]. 吉林大学学报(工学版), 2009, 39(03): 587 -0592 .
[2] DUAN Bin, SUN Tong-jing,LI Zhen-hua, HUANG Chang-wei,ZHANG Guang-xian. IIR Butterworth digital filter for full digital inverter[J]. 吉林大学学报(工学版), 2009, 39(增刊2): 311 -0314 .
[3] JIN Jing-Fu, MA Yi, LIU Yu-Rong, CONG Qian. Aerodynamic analysis of the family of airfoil of owl[J]. 吉林大学学报(工学版), 2010, 40(增刊): 278 -0281 .
[4] Jin Lisheng, Wang Rongben, Gao Long, Guo Lie. Shadow path mark segmentation method based on regiongrowing for intelligent vehicle[J]. 吉林大学学报(工学版), 2006, 36(增刊1): 132 -0135 .
[5] WANG Qiang,DAI Jing-min,HE Xiao-wa. Effect of time delay on thermal conductivity measurement with transient planar heat source technique[J]. 吉林大学学报(工学版), 2011, 41(03): 711 -715 .
[6] MA Kai, GUAN Hsin, PANG Shu-yi, ZHAN Jun. Interval control method on consistency of suspension kinematics[J]. 吉林大学学报(工学版), 2011, 41(4): 910 -914 .
[7] YU Xiao-hui, SHI Yao-wu. Cross-spectral ESPRIT Method for LFM Parameter[J]. 吉林大学学报(工学版), 2005, 35(05): 551 -0555 .
[8] KONG Fan-sen,WANG Jun,SUN Hai-gang . Fuzzy comprehensive evaluation of equipment usability of engine cylinder block production line based on AHP[J]. 吉林大学学报(工学版), 2008, 38(06): 1332 -1336 .
[9] HE Dong-ye,YANG Shen-hua,KOU Shu-qing . Numerical analysis on fracture splitting technology of main bearing block of engine[J]. 吉林大学学报(工学版), 2009, 39(01): 78 -82 .
[10] SHI Wen-Xiao, GONG Jing. An uplink packet scheduling algorithm based on WiMAX[J]. 吉林大学学报(工学版), 2010, 40(05): 1386 -1391 .