Journal of Jilin University(Engineering and Technology Edition) ›› 2022, Vol. 52 ›› Issue (9): 2025-2033.doi: 10.13229/j.cnki.jdxbgxb20220042

Previous Articles    

Development and experimental of high⁃power proton exchange membrane fuel cell test system

Zhen-ning LIU(),Ke JIANG,Tao-tao ZHAO,Wen-xuan FAN,Guo-long LU()   

  1. Key Laboratory for Bionic Engineering,Ministry of Education,Jilin University,Changchun 130022,China
  • Received:2022-01-09 Online:2022-09-01 Published:2022-09-13
  • Contact: Guo-long LU E-mail:liu_zhenning@jlu.edu.cn;guolonglu@jlu.edu.cn

Abstract:

In view of the current high-power fuel cell system, a high-power fuel cell test platform was designed and developed, and the performance test of the 120 kW fuel cell was completed through the design, selection, construction, and debugging of the system. The test platform integrates hydrogen flow, air flow and thermal management control systems, integrates and optimizes the layout between the various subsystems, and makes post-maintenance more convenient.At the same time, the test platform uses LABVIEW software to design the control interface of the upper computer, uses Simulink software to design the control program of the lower computer controller and writes the determined parameters of the components into the controller, and then realizes the communication through the CAN box between the upper computer and the controller. The online real-time control of the system by the host computer control interface, and can automatically optimize the operating parameters of each component according to the load change. By analyzing the test data collected by the test platform, it is possible to evaluate whether the fuel cell system meets the expected design requirements. The test platform has certain guiding significance for the research and production of high-power fuel cell systems and the development of fuel cell test platforms, and provides a guarantee for the development of fuel cell systems.

Key words: bionic sciences and engineering, proton exchange membrane fuel cell (PEMFC), high-power, test platform, integration

CLC Number: 

  • TM911.4

Fig.1

Schematic three-dimensional design offuel cell test platform"

Table 1

Parameters of hydrogen circulation pump"

参 数数值
最大排气压力/105 Pa(A)3.0
压比范围1~1.3
泵体排量/mL200
运行温度/°C-30~85
最大输入功率/kW1.5

Fig.2

Schematic diagram of hydrogen system"

Fig.3

Schematic diagram of air system"

Table 2

Pressure ratios under the main speed (n) and mass flow (m) settings of the air compressor"

m/(g·s-1n/(r·min-1
70 00080 00090 00095 000
902.022.583.22-
1201.802.293.153.48
150--2.903.24
180---2.80

Fig.4

Schematic diagram of the main heat exchange system for heat management"

Table 3

The parameters of cooling water pump"

参数数值及说明
额定流量/(L·min-1250
额定转速/(r·min-16000
供电/VDC 530
功率/kW0.8~1.5
适用介质去离子水或FC专用防冻液

Fig.5

Schematic diagram of the auxiliary heat exchange system for heat management"

Fig.6

Schematic diagram of the overall system framework"

Fig.7

FCU controller"

Table 4

Technical parameters of FCU controller"

项目技术参数
微控制器双核SPC5743R,32位,最高主频200 MHz。
SRAM 128 kB,Flash 2 MB,FRAM 64 kbit。
供电

DC530 V (450~750 V);

4路5 V,2路12 V传感器供电电源。

输入

24路模拟量输入,其中10路电阻量输入;

2路0~12 V,22路0~5 V电压量输入。

22路开关量输入,其中6路低有效,16路高有效开关量输入。
输出5路Peak-Hold双边驱动,支持BOOST升压。
6路高边驱动,额定1 A,峰值3 A,支持PWM工作模式和开关工作模式。

14路低边驱动,其中,5路额定4 A,峰值8 A;

6路额定0.4 A,峰值0.8 A;2路额定0.4 A,

峰值0.8 A;1路额定1 A,峰值3 A。

通讯CAN2.0B,4路。

Fig.8

Photograph of high-power fuel cell test platform"

Fig.9

Polarization and power-current density curves of 120 kW fuel cell stack"

Fig.10

Change of air mass flow rate in responseto the output power of fuel cell"

Fig.11

Temperature change of inlet/outlet cooling water for fuel cell"

1 孙华, 戚頔, 刘辉, 等. Pt基有序金属间化合物氧还原催化剂研究进展[J]. 材料科学, 2019, 9(5): 479-488.
Sun Hua, Qi Di, Liu Hui, et al. Recent advances in Pt-based ordered intermetallic catalysts for oxygen recent[J]. Material Sciences, 2019, 9(5): 479-488.
2 庄林. 燃料电池[J]. 物理化学学报, 2021, 37(9): 9-11.
Zhuang Lin. Fuel cells[J]. Acta Physico-Chimica Sinica, 2021, 37(9): 9-11.
3 王哲, 谢怡, 臧鹏飞, 等. 基于极小值原理的燃料电池客车能量管理策略[J]. 吉林大学学报: 工学版, 2020, 50(1): 36-43.
Wang Zhe, Xie Yi, Zang Peng-fei, et al. Energy management strategy of fuel cell bus based on Pontryagin′s minimum principle[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(1): 36-43.
4 阮庆洲. 基于LabVIEW 的PEMFC测试平台的研究[D]. 上海: 上海交通大学电子信息与电气工程学院, 2010.
Ruan Qing-zhou. The research of based LABVIEW PEMFC test platform[D]. Shanghai:School of Electronic Information and Electrical Engineering,Shanghai Jiao Tong University, 2010.
5 Chabane D, Harel F, Djerdir A, et al. Energetic modeling, simulation and experimental of hydrogen desorption in a hydride tank[J]. International Journal of Hydrogen Energy, 2019, 44(2): 1034-1046.
6 Feng Xiang-chen, Ran-jiao Jie, Zhong Jun-hou, et al. Robust polymer electrolyte membrane fuel cell temperature tracking control based on cascade internal model control[J]. Journal of Power Sources, 2020, 47: No. 9229008.
7 吴曦. 质子交换膜燃料电池测试系统设计及单电池建模[D]. 上海:上海交通大学化学化工学院,2010.
Wu Xi. Design of proton exchange membrance fuel cell test station and the single cell modeling[D]. Shanghai:School of Chemistry and Chemical Engineering,Shanghai Jiao Tong University, 2010.
8 匡鹏,邵飞. 一种基于模块化的燃料电池测试系统[J]. 船电技术, 2020, 40(12): 8-13.
Kuang Peng, Shao Fei. A fuel cell stack test system based on modularization[J]. Marine Electric & Electronic Engineering, 2020,40(12): 8-13.
9 马志昆. 基于网络学习控制的燃料电池测试系统研究及应用[J]. 测控技术, 2009, 28(12): 63-67.
Ma Zhi-kun. Research and application of fuel cell stack test system based on networked learning control[J]. Measurement and Control Technology, 2009, 28(12): 63-67.
10 王建建,胡辰树. 我国氢燃料电池专用车发展现状与趋势分析[J]. 专用汽车, 2021, 39(4): 51-55.
Wang Jian-jian, Hu Chen-shu. Development status and trend analysis of hydrogen fuel cell special vehicle in China[J]. Special Purpose Vehicle, 2021, 39(4): 51-55.
11 Liu Biao, Chen Hui-cui, Zhang Tong, et al. A vehicular proton exchange membrane fuel cell system co-simulation modeling method based on the stack internal distribution parameters monitoring[J]. Energy Conversion and Management, 2019, 197: No. 111898
12 袁永先,吴波,刘长振, 等. 质子交换膜燃料电池发电系统设计[J]. 小型内燃机与车辆技术, 2021,50(2): 55-61.
Yuan Yong-xian, Wu Bo, Liu Chang-zhen, et al. Design of proton exchange membrane fuel cell power generation system[J]. Small Internal Combustion Engine and Vehicle Technique, 2021, 50(2): 55-61.
13 张奥,杨军,吴桐, 等. 燃料电池车载氢气供给系统概述[J]. 船电技术, 2019,39(9): 53-56.
Zhang Ao, Yang Jun, Wu Tong, et al. Application of hydrogen supply system for fuel cell vehicles[J]. Marine Electric & Electronic Engineering, 2019, 39(9): 53-56.
14 邵孟,朱新坚,曹弘飞, 等. 燃料电池测试实验台的设计与研究[J]. 电源技术, 2017, 41(7): 994-995, 1000.
Shao Meng, Zhu Xin-jian, Cao Hong-fei, et al. Design and research of fuel cell experiment plat[J]. Chinese Journal of Power Sources, 2017, 41(7): 994-995, 1000.
15 泮国荣,胡桂林,项忠晓, 等. 质子交换膜燃料电池测试系统的设计与搭建[J]. 电源技术, 2014, 38(8): 1469-1471.
Pan Guo-rong, Hu Gui-lin, Xiang Zhong-xiao, et al. Design and building of test system for proton exchange membrane fuel cell[J]. Chinese Journal of Power Sources, 2014, 38(8): 1469-1471.
16 陶诗涌,高建龙,汤浩. 多功能燃料电池测试平台的设计与开发[J]. 东方电气评论, 2011, 25(4): 13-19.
Tao Shi-yong, Gao Jian-long, Tang Hao. Engineering design of multifunctional fuel cell testing station[J]. Dongfang Electric Review, 2011, 25(4): 13-19.
17 刘波,赵锋,李骁. 质子交换膜燃料电池热管理技术的进展[J]. 电池, 2018, 48(3): 202-205.
Liu Bo, Zhao Feng, Li Xiao. Review on thermal management technology of PEMFC[J]. Battery Bimonthly, 2018, 48(3): 202-205.
18 Xia Quan-gang, Zhang Tong, Gao Yuan, et al. Optimal design of thermostat for proton exchange membrane fuel cell cooling system[J]. Energy Conversion and Management, 2021, 248: No. 114800.
19 侯健, 杨铮, 贺婷, 等. 质子交换膜燃料电池热管理问题的研究进展[J]. 中南大学学报: 自然科学版, 2021, 52(1): 19-30.
Hou Jian, Yang Zheng, He Ting, et al. Research progress on thermal management of proton exchange membrane fuel cells[J]. Journal of Central South University (Science and Technology), 2021, 52(1): 19-30.
20 徐创, 王建成, 卫东. 基于LabVIEW与CAN总线通讯的燃料电池监控系统设计[J]. 电源技术, 2018, 42(7): 1015-1017.
Xu Chuang, Wang Jian-cheng, Wei Dong. Design of fuel cell monitoring and control system based on LabVIEW and CAN bus communication[J]. Chinese Journal of Power Sources, 2018, 42(7): 1015-1017.
21 彭赟, 彭飞, 刘志祥, 等. 基于PLC和LabVIEW的燃料电池测试系统设计[J]. 电源技术, 2016, 40(3): 575-579.
Peng Yun, Peng Fei, Liu Zhi-xiang, et al. Design of fuel cell test system based on PLC and LabVIEW[J]. Chinese Journal of Power Sources, 2016, 40(3): 575-579.
[1] Hong-zhi WANG,Ting-ting WANG,Huang-shui HU,Xiao-fan LU. PID control based on BP neural network optimized by Q⁃learning for speed control of BLDCM [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2280-2286.
[2] ZHONG Wei, JUAN Zhi-cai, SUN Bao-feng. Hierarchical hub location model for integration of urban and rural public transport in an incomplete network [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1387-1397.
[3] SUN Xiu-rong, DONG Shi-min, WANG Hong-bo, LI Wei-cheng, SUN Liang. Comparison of multistage simulation models of entire sucker rod with spatial buckling in tubing [J]. 吉林大学学报(工学版), 2018, 48(4): 1124-1132.
[4] YIN Zi-hong, ZHU Bo, SHAO Guo-xia, KONG De-hui, JIANG Liang-wei. Response of railway track and subgrade under the effect overweight goods [J]. 吉林大学学报(工学版), 2017, 47(5): 1446-1452.
[5] ZENG Xiao-hua, JIANG Yuan-de, SONG Da-feng, PENG Yu-jun, YANG Nan-nan. Integration of fault diagnosing algorithm into energy management strategy for hybrid electric vehicle [J]. 吉林大学学报(工学版), 2016, 46(4): 1030-1037.
[6] SUN Ting, QI Ying-chun, GENG Guo-hua. Moving object detection algorithm based on frame difference and background subtraction [J]. 吉林大学学报(工学版), 2016, 46(4): 1325-1329.
[7] LIN Jun, ZHAO Yue, JIANG Chuan-dong, LI Tong, LIU Xiao-nan. Three-dimensional forward modeling with high precision for underground MRS based on Hammer integration [J]. 吉林大学学报(工学版), 2016, 46(2): 609-615.
[8] LU Xiao-hu, YU Dong, HU Yi, YAO Zhuang. Numerical control system information integration method based on agent [J]. 吉林大学学报(工学版), 2015, 45(6): 1980-1986.
[9] GAO Yi,XU Cheng-yu,CAO Guo-hua. Study on correction model of aligning large-scale machine set to its center based on bionic imaging theory with photoelectric multipoint [J]. 吉林大学学报(工学版), 2014, 44(3): 692-695.
[10] WU Wei, MA Wan-jing, YANG Xiao-guang. Route based signal coordination control model within vehicle infrastructure integration environment [J]. 吉林大学学报(工学版), 2014, 44(2): 343-351.
[11] HE Yao, LIU Xing-tao, ZHANG Chen-bin, CHEN Zong-hai. Insulation detection algorithm for high-power battery system based on internal resistance model [J]. 吉林大学学报(工学版), 2013, 43(05): 1165-1170.
[12] YAN Qing-dong, YU Tao, ZHU Li-jun, WEI Wei. Efficiency control of hydrodynamic-mechanical transmission of engineering machinery [J]. 吉林大学学报(工学版), 2013, 43(03): 602-606.
[13] LI Ji-mei, DU Mei-jie. Information integration algorithm of heterogeneous XBRL financial reporting [J]. 吉林大学学报(工学版), 2012, 42(增刊1): 266-270.
[14] LI Shu-sheng, ZHONG Mai-ying. Design of control system based on PID of three-axis inertially stabilized platform for airborne remote sensing [J]. 吉林大学学报(工学版), 2011, 41(增刊1): 275-279.
[15] ZHANG Jing-bo,ZHANG Shu-fang,HU Qing,WANG Jin-peng,SUN Xiao-wen,JIANG Yi. Carrier PLL bandwidth in GNSS digital receiver [J]. 吉林大学学报(工学版), 2011, 41(6): 1793-1797.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!