Journal of Jilin University(Engineering and Technology Edition) ›› 2023, Vol. 53 ›› Issue (12): 3446-3451.doi: 10.13229/j.cnki.jdxbgxb.20221275

Previous Articles    

Optimization algorithm of urban rail transit operation scheduling based on linear programming

Qing-yong WANG1(),Wei-qiang QU2()   

  1. 1.School of Mechanical and Electronic Control Engineering,Beijing Jiaotong University,Beijing 100044,China
    2.School of Information Science and Technology,Fudan University,Shanghai 200433,China
  • Received:2022-09-29 Online:2023-12-01 Published:2024-01-12
  • Contact: Wei-qiang QU E-mail:wangqingyong2022@yeah.net;quweiqiang2022@yeah.net

Abstract:

In order to improve the overall travel efficiency of urban rail transit, an optimization algorithm for urban rail transit operation scheduling based on linear programming was proposed. By extracting the characteristics of rail transit road conditions and passenger flow, a scheduling optimization model that fits the actual situation was established. Linear programming was used to transform the scheduling optimization model into an integrated scheduling optimization model for urban rail transit with significantly reduced infinite discretization probability. The experimental results show that the average delay time after optimization of the proposed method is reduced by 17 min, the travel time of passengers is reduced by 25 min, and the coincidence rate between rail stations and passenger flow demand points is high, indicating that the scheduling effect of the method is good.

Key words: computer technology, urban rail transit, track traffic characteristics, passenger flow features, dispatch optimization model, linear planning

CLC Number: 

  • TP399

Fig.1

Rail transit structure of the test object"

Table 1

Method of optimization of the method of optimization"

参考优化前优化后
乘客行程时间/min4015
平均延误时间/min225
平均排队长度/m150

Fig.2

Beijing's rail station and passenger flow requirements"

Fig.3

Optimization results of different methods"

1 周康, 宋瑞, 彭虓. 城市轨道交通用地综合开发现状及对策[J]. 都市快轨交通, 2020, 33(2): 20-24.
Zhou Kang, Song Rui, Peng Yan. Current situation and countermeasures of comprehensive land development for urban rail transit[J]. Urban Rapid Rail Transit, 2020, 33(2): 20-24.
2 何胜学. 考虑目的地选择的交通流分配双层规划模型及算法[J]. 武汉理工大学学报: 交通科学与工程版, 2019, 43(4): 596-600.
He Sheng-xue. Bi-level programming model and algorithm for traffic flow assignment considering destination selection[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2019, 43(4): 596-600.
3 赖元文, 张杰. 基于模拟退火-自适应布谷鸟算法的城市公交调度优化研究[J]. 交通运输系统工程与信息, 2021, 21(1): 183-189.
Lai Yuan-wen, Zhang Jie. Urban bus scheduling optimization based on simulated anneal-adaptive cuckoo search algorithm[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(1): 183-189.
4 刘辉, 代学武, 崔东亮, 等. 基于参数自适应蚁群算法的高速列车行车调度优化[J]. 控制与决策, 2021, 36(7): 1581-1591.
Liu Hui, Dai Xue-wu, Cui Dong-liang, et al. Optimization of high-speed train operation scheduling based on parameter adaptive improved ant colony algorithm[J]. Control and Decision, 2021,36(7): 1581-1591.
5 马超群, 张爽, 陈权, 等. 客流特征视角下的轨道交通网络特征及其脆弱性[J]. 交通运输工程学报, 2020, 20(5): 208-216.
Ma Chao-qun, Zhang Shuang, Chen Quan, et al. Characteristics and vulnerability of rail transit network besed on perspective of passenger flow characteristics[J]. Journal of Traffic and Transportation Engineering, 2020, 20(5): 208-216.
6 达成, 钱勇生, 曾俊伟, 等. 城市轨道交通线网结构评价研究[J]. 铁道运输与经济, 2020, 42(2):122-127, 134.
Cheng Da, Qian Yong-sheng, Zeng Jun-wei, et al. A study on the evaluation of urban rail transit network structure[J]. Railway Transport and Economy, 2020, 42(2): 122-127, 134.
7 宋俪婧, 白同舟, 贺玉龙, 等. 基于混合整数非线性规划的接驳公交优化模型[J]. 交通运输系统工程与信息, 2022,22(3):104-111.
Song Li-jing, Bai Tong-zhou, He Yu-long, et al. Feeder bus routes and frequency optimization based on mixed integer nonlinear programming[J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(3): 104-111.
8 周喜华, 贾洪信, 黄晓红, 等. 一种变量是梯形模糊数的两层多随从线性规划模型及其算法[J]. 工程数学学报, 2021, 38(1): 49-62.
Zhou Xi-hua, Jia Hong-xin, Huang Xiao-hong, et al. Model and algorithm of the bi-level multiple followers linear programming with trapezoidal fuzzy decision variables[J]. Chinese Journal of Engineering Mathematics, 2021, 38(1): 49-62.
9 许卫华, 郭海峰. 不同交通流状况下车辆分布式协同调度仿真[J]. 计算机仿真, 2020, 37(7): 178-182.
Xu Wei-hua, Guo Hai-feng. Distributed cooperative vehicle scheduling simulation under different traffic flow conditions[J]. Computer Simulation, 2020, 37(7): 178-182.
10 贾洪飞, 丁心茹, 杨丽丽. 城市潮汐车道优化设计的双层规划模型[J]. 吉林大学学报: 工学版, 2020, 50(2): 535-542.
Jia Hong-fei, Ding Xin-ru, Yang Li-li. Bi-level programming model for optimization design of tidal lane[J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 535-542.
[1] Jing WANG,Feng WAN,Chun-jiao DONG,Chun-fu SHAO. Modelling on catchment area and attraction intensity of urban rail transit stations [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 439-447.
[2] ZHAO Xue-yu, YANG Jia-qi, PENG Ya-mei. Competitive and cooperative relationship evolution mechanism between urban rail transit and traditional bus [J]. 吉林大学学报(工学版), 2017, 47(3): 756-764.
[3] YAO Xiang-ming, ZHAO Peng, YU Dan-dan. Dynamic origin-destination matrix estimation for urban rail transit based on averaging strategy [J]. 吉林大学学报(工学版), 2016, 46(1): 92-99.
[4] CAO Yang, ZHAO Shu-zhi, TIAN Qing-fei. Urban rail transit subsidy policy based on maximum welfare [J]. , 2012, (03): 618-622.
[5] ZHAO Shu-zhi, CAO Yang, TIAN Qing-fei. Urban rail transit scheduling decision based on information fusion [J]. 吉林大学学报(工学版), 2011, 41(增刊1): 85-88.
[6] CAO Shou-hua,YUAN Zhen-zhou,ZHAO Dan. Queuing mechanism of passengers at exit stairs of urban rail transit [J]. 吉林大学学报(工学版), 2009, 39(06): 1463-1468.
[7] Yang Li-ya;Shao Chun-fu . Integrated forecasting model for real estate price along urban rail transit based on BP neural network and Markov chain [J]. 吉林大学学报(工学版), 2008, 38(03): 514-0519.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!