Journal of Jilin University(Engineering and Technology Edition) ›› 2023, Vol. 53 ›› Issue (8): 2272-2276.doi: 10.13229/j.cnki.jdxbgxb.20211048

Previous Articles    

Preparation of cubic Li7La3Zr2O12 solid electrolyte by fast hot⁃press sintering

Yue YANG(),Tian-hui MA,Pei-lei ZHAO,Jian-ming JIA   

  1. School of Materials Science and Engineering,Changchun University of Technology,Changchun 130012,China
  • Received:2021-10-12 Online:2023-08-01 Published:2023-08-21

Abstract:

In this paper, a garnet-type Li7La3Zr2O12 powder was synthesized through the solid-phase reaction route, an electric field-assisted fast hot-press sintering process was used to prepare a cubic phase lithium ion conductive Li7La3Zr2O12 solid electrolyte at a low temperature of 850 ℃, and the influence of sintering temperature on phase composition, microscopic morphology, density and lithium ion conductivity was systematically studied in the range of 820~900 ℃. The results show that when the sintering process conditions are set to a low temperature of 850 ℃, a constant pressure of 25 MPa, and a holding time of 15 minutes, a pure cubic Li7La3Zr2O12 structure can be obtained, the crystal grains are arranged tightly, the measured relative density is 93%, and the total ion conductivity has reached 1.14×10-4 S cm-1.

Key words: materials science, solid electrolyte, fast hot-press sintering, sintering temperature, ion conductivity

CLC Number: 

  • TB34

Fig.1

Flow chart of preparation of LLZO Pre-calcined powder by solid-state reaction method"

Fig.2

Sintering behavior and mechanism of Li7La3Zr2O12 specimen"

Fig.3

XRD patterns of Li7La3Zr2O12 specimens sintered at different temperatures"

Fig.4

Scanning electron microscopy micrographs and relative density changes of sintered samples at different temperatures"

Table 1

Room temperature ionic conductivity and relative density of LLZO at various sintering temperatures"

烧结温度/℃离子电导率/(S?cm-1相对密度/%
8206.60×10-582
8501.14×10-493
9007.56×10-590

Fig.5

Typical electrochemical impedance spectra of LLZO sintered at different temperatures"

1 Huang X, Su J M, Song Z, et al. Synthesis of Ga-doped Li7La3Zr2O12 solid electrolyte with high Li+ion conductivity[J]. Ceramics International, 2021, 47 (2): 2123-2130.
2 王凤武, 朱传高, 方文彦, 等. 溶胶-凝胶法合成锂离子电池负极材料及其性能[J]. 吉林大学学报: 工学版, 2007, 37(6): 1332-1335.
Wang Feng-wu, Zhu Chuan-gao, Fang Wen-yan, et al. Synthesis and properties of cathode materials for lithium ion batteries by sol-gel method[J]. Journal of Jilin University (Engineering and Technology Edition), 2007, 37(6): 1332-1335.
3 Geng H X, Chen K, Yi D, et al. Formation mechanism of garnet-like Li7La3Zr2O12 powder prepared by solid state reaction[J]. Rare Metal Materials and Engineering, 2016, 45(3): 612-616.
4 Shen F, Guo W C, Zeng D Y, et al.A simple and highly efficient method toward high-density garnet-type LLZTO solid-state electrolyte[J]. ACS Appl Mater Interfaces, 2020, 12(27): 30313-30319.
5 Murugan R, Thangadurai V, Weppner W.Fast lithium ion conduction in garnet-type Li(7)La(3)Zr(2)O(12) [J]. Angewandte Chemie, 2010, 38(50): 7778-7781.
6 Awaka J, Takashima A, Kataoka K, et al.Crystal structure of fast lithium-ion-conducting cubic Li7La3Zr2O12 [J]. Chemistry Letters, 2011, 40(1): 60-62.
7 Guo R F, Mao H R, Zhao Z T, et al.Ultrafast high-temperature sintering of bulk oxides[J]. Scripta Materialia, 2021, 193: 103-107.
8 Laptev A M, Zheng H, Bram M, et al.High-pressure field assisted sintering of half-cell for all-solid-state battery[J]. Materials Letters, 2019, 247: 155-158.
9 杨悦, 李雪, 徐晓丹. Ti-B-C-N粉末烧结的微观组织及其性能[J]. 吉林大学学报: 工学版, 2017, 47(2): 552-556.
Yang Yue, Li Xue, Xu Xiao-dan. Microstructure and properties of sintered Ti-B-C-N powder[J]. Journal of Jilin University (Engineering and Technology Edition), 2017,47(2):552-556.
10 Mishra M, Hsu C W, Chandra R P, et al.Ga-doped lithium lanthanum zirconium oxide electrolyte for solid-state Li batteries[J]. Electrochimica Acta, 2020, 353: 136536.
11 Sastre J, Priebe A, Döbeli M, et al.Lithium garnet Li7La3Zr2O12 electrolyte for all-solid-state batteries: closing the gap between bulk and thin film Li-Ion conductivities[J]. Advanced Materials Interfaces, 2020, 7(17): 2000425.
12 Yang L, Dai Q S, Liu L, et al.Rapid sintering method for highly conductive Li7La3Zr2O12 ceramic electrolyte[J]. Ceramics International, 2020, 46(8): 10917-10924.
13 Räthel J, Herrmann M, Beckert W. Temperature distribution for electrically conductive and non-conductive materials during Field Assisted Sintering (FAST)[J]. Journal of the European Ceramic Society, 2009, 29(8): 1419-1425.
14 袁钰程. Li7La3Zr2O12基石榴石固态电解质的制备及其性能表征[D]. 深圳: 深圳大学材料学院, 2019.
Yuan Yu-cheng. Synthesis and property characterization of Li7La3Zr2O12 based garnet solid state electrolyte[D].Shenzhen: College of Materials Science and Engineering, Shenzhen University, 2019.
15 Zhao Y Z, Liu Z Y, Xu J X, et al.Synthesis and characterization of a new perovskite-type solid-state electrolyte of Na1/3La1/3Sr1/3ZrO3 for all-solid-state sodium-ion batteries[J]. Journal of Alloys and Compounds, 2019, 783: 219-225.
16 Li C L, Liu Y F, He J, et al.Ga-substituted Li7La3Zr2O12: an investigation based on grain coarsening in garnet-type lithium ion conductors[J]. Journal of Alloys and Compounds, 2017, 695: 3744-3752.
17 Zhang Y H, Chen F, Tu R, et al.Field assisted sintering of dense Al-substituted cubic phase Li7La3Zr2O12 solid electrolytes[J]. Journal of Power Sources, 2014, 268: 960-964.
18 Sun K N, Z J, Jiang T Z, et al.Flash-sintering and characterization of La0.8Sr0.2Ga0.8Mg0.2O3-δ electrolytes for solid oxide fuel cells[J]. Electrochimica Acta, 2016, 196: 487-495.
19 王新富. 铜钡共掺杂锂镧锆氧固体电解质的研制[D]. 上海: 上海应用技术大学化学与环境工程学院, 2020.
Wang Xin-fu. The development of Cu, Ba-doped Li7La3Zr2O12 solid electrolyte[D].Shanghai: School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 2020.
20 Zaiss T, Ortner M, Murugan R, et al.Fast ionic conduction in cubic hafnium garnet Li7La3Hf2O12 [J]. Ionics, 2010, 16(9): 855-858.
[1] Mi WANG,Zhi-yuan LI,Wen-xuan FAN,Jia-yi LI,Zhen-ning LIU,Guo-long LU. Influence factors upon friction coefficient of bioinspired materials with integrated soft and hard layers [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1630-1635.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!