Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (11): 3192-3198.doi: 10.13229/j.cnki.jdxbgxb.20230631

Previous Articles    

Fatigue damage evolution of asphalt concrete based on CT 3D reconstruction technology

Xing-lin ZHOU1,2,3(),Yang LIU1,2,3,Lu LIU1,2,3   

  1. 1.School of Mechanical Automation,Wuhan University of Science and Technology,Wuhan 430081,China
    2.Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering,Wuhan University of Science and Technology,Wuhan 430081,China
    3.Key Laboratory of Metallurgical Equipment and Control Technology,Ministry of Education,Wuhan University of Science and Technology,Wuhan 430081,China
  • Received:2023-06-20 Online:2024-11-01 Published:2025-04-24

Abstract:

Due to the extremely complex internal structure of asphalt concrete, it exhibits different changing characteristics at different fatigue stages. In order to obtain the fatigue damage evolution process of asphalt concrete, research was conducted based on CT three-dimensional reconstruction technology. Conducting fatigue tests on asphalt concrete, obtaining CT scan images and 3D reconstruction images of different fatigue stages; The difference box dimension method is used to calculate the Fractal dimension of 3D CT reconstruction image, and the relationship between fatigue damage times and Fractal dimension is obtained; Using Miner's linear fatigue damage model to redefine the damage variables of asphalt concrete, it is concluded that the fatigue damage evolution process exhibits linear changes. By constructing epoxy asphalt concrete specimens for experimental testing, the results show that the proposed method can accurately calculate the relationship between compressive displacement and crack volume of asphalt concrete and fatigue damage, and infer the fatigue damage evolution process of asphalt concrete.

Key words: CT 3D reconstruction technology, fatigue damage of asphalt concrete, damage variables, linear variation

CLC Number: 

  • U334

Fig.1

3D Reconstruction process of asphalt concrete CT"

Table 1

Fractal dimension of CT images in different fatigue stages"

疲劳阶段分形维数
初始状态2.49
加载150万次2.50
加载300万次2.52
加载350万次2.56
加载450万次2.60

Fig.2

Relationship between fatigue damage times of asphalt concrete and Fractal dimension"

Fig.3

CT scan results of asphalt concrete specimens"

Fig.4

Curve of variation between compressive displacement and crack volume of asphalt concrete"

Table 2

Relationship between static load and moving load at different vehicle speeds"

车速/

(km·h-1

沥青混凝土

竖向位移/mm

与静力作用

相比/%

201.40+7.7
601.44+10.8
1001.57+20.8
1401.72+32.2

Fig.5

Diagram of the relationship between compressive displacement and fatigue damage"

Fig.6

Diagram of the relationship between crack volume and fatigue damage"

1 赵国良, 董成, 王雷. 荷载多变的混凝土弯曲疲劳数值仿真[J]. 计算机仿真, 2022, 39(9): 343-347.
Zhao Guo-liang, Dong Cheng, Wang Lei. Numericalsimulation of bending fatigue of concrete with variableload[J]. Computer Simulation, 2022, 39(9): 343-347.
2 陈双, 莫忧, 胡建. 高温尾喷作用下水泥混凝土道面的疲劳损伤[J]. 西安建筑科技大学学报: 自然科学版, 2021, 53(2): 194-201.
Chen Shuang, Mo You, Hu Jian. Fatigue damage of cement concrete pavement under high temperature tail spray[J]. Journal of Xi'an University of Architecture and Technology(Natural Science Edition), 2021, 53(2): 194-201.
3 马海鹏, 余沛. 高寒高海拔地区玄武岩纤维沥青混凝土损伤自愈合性能分析[J]. 硅酸盐通报, 2021, 40(8): 2803-2810.
Ma Hai-peng, Yu Pei. Analysis of damage self-healing performance of basalt fiber asphalt concrete at high-cold and high-altitude area[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(8): 2803-2810.
4 杨荣周, 郑强强, 陈佩圆, 等. 分级等荷循环受压下橡胶水泥砂浆的疲劳损伤演化[J]. 建筑材料学报, 2021, 24(5): 961-969.
Yang Rong-zhou, Zheng Qiang-qiang, Chen Pei-yuan, et al. Fatigue and damage evolution characteristics of rubber cement mortar under graded constant load cyclic compression[J]. Journal of Building Materials, 2021, 24(5): 961-969.
5 张培, 任青文. 循环荷载下混凝土疲劳损伤累积分析的颗粒流黏结退化模型[J]. 工程力学, 2021, 38(S1): 100-109.
Zhang Pei, Ren Qing-wen. Particle bond-degradation model for cumulative damage analysis of concrete under cyclic loading[J]. Engineering Mechanics, 2021, 38(S1): 100-109.
6 许见超, 吴洁琼, 刁波, 等. 配筋率和氯腐蚀环境对钢筋混凝土梁疲劳损伤累积的影响[J]. 铁道建筑, 2021, 61(2): 16-19.
Xu Jian-chao, Wu Jie-qiong, Diao Bo, et al. Impact of reinforcement ratio and chloride-corrosion environment on fatigue damage accumulation of reinforced concrete beams[J]. Railway Engineering 2021, 61(2): 16-19.
7 丁兆东, 刘剑锋. 基于疲劳损伤模型的钢筋混凝土梁疲劳可靠度分析[J]. 合肥工业大学学报: 自然科学版, 2022, 45(7): 931-938.
Ding Zhao-dong, Liu Jian-feng. Fatigue reliability analysis of reinforced concrete beams based on fatigue damage model[J]. Journal of Hefei University of Technology(Natural Science Edition), 2022, 45(7): 931-938.
8 吴洁琼, 陈圣刚, 赵体波, 等. 疲劳损伤与氯腐蚀作用后钢筋混凝土梁疲劳寿命预测[J]. 建筑结构学报, 2022, 43(S1): 69-76.
Wu Jie-qiong, Chen Sheng-gang, Zhao Ti-bo, et al. Fatigue life prediction of fatigue damaged and chloride corroded RC beams[J]. Journal of Building Structures, 2022, 43(S1): 69-76.
9 丑佳璇, 张智涛, 张建仁, 等. NSM CFRP-混凝土界面疲劳黏结性能研究[J]. 中国公路学报, 2022, 35(2): 234-246.
Jia-xuan Chou, Zhang Zhi-tao, Zhang Jian-ren, et al. Study on fatigue bond behavior of NSM CFRP-concrete interface[J]. China Journal of Highway and Transport, 2022, 35(2): 234-246.
10 徐晨, 肖涵, 王巍. 超高性能混凝土组合桥面板集群化短焊钉抗疲劳特性[J]. 同济大学学报: 自然科学版, 2022, 50(5): 667-677.
Xu Chen, Xiao Han, Wang Wei. Anti-fatigue characteristics of short grouped-stud in ultra-high performance concrete composite bridge decks[J]. Journal of Tongji University(Natural Science Edition), 2022, 50(5): 667-677.
11 Xu L, Liu H, Yu Z. A coupled model for investigating the interfacial and fatigue damage evolution of slab tracks in vehicle-track interaction[J]. Applied Mathematical Modelling, 2022, 101: 772-790.
12 Zhang D, Xie Z, Ueda T, et al. Assessment of fatigue damage of prefabricated concrete composite beams with piezomagnetic signal[J]. Journal of Magnetism and Magnetic Materials, 2022, 547: No.168931.
13 Jia M, Wu Z, Yu R C, et al. Residual fracture energy of concrete suffering from fatigue loading[J]. Engineering Fracture Mechanics, 2021, 255:No. 107956.
14 Song Z, Konietzky H, Cai X. Modulus degradation of concrete exposed to compressive fatigue loading: insights from lab testing[J]. Structural Engineering and Mechanics, 2021, 78(3): 281-296.
15 Sultani M M, Dong L, Chang W G. Corroded post-tensioned concrete beams fatigue behavior under high cyclic loading[J]. International Organization of Scientific Research, 2022, 12(3): 1-15.
16 Li W, Xiong L, Wang X, et al. Theoretical study on fatigue cumulative damage model of nanometer concrete[J]. IOP Conference Series: Earth and Environmental Science, 2021, 787(1): No.012183.
17 Wang W, Shen A, He Z, et al. Mechanism and erosion resistance of internally cured concrete including super absorbent polymers against coupled effects of acid rain and fatigue load[J]. Construction and Building Materials, 2021, 290(12): No.123252.
18 Song Z, Konietzky H, Herbst M, et al. Fatigue and micro-seismic behaviors of concrete disks exposed to cyclic brazilian testing: a numerical investigation based on a 3D particle-based model[J]. International Journal of Fatigue, 2022, 155: No.106629.
19 Dong G, Wu J, Zhao X. Fatigue performance of recycled aggregate concrete beams with corroded steel reinforcement[J]. ACI Structural Journal, 2022, 119(2): 123-137.
20 Sainzaja J A, Carrascal I A, Polanco J A, et al. Effect of temperature on fatigue behaviour of self-compacting recycled aggregate concrete[J]. Cement & Concrete Composites, 2022, 125:No. 104309.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!