Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (2): 550-557.doi: 10.13229/j.cnki.jdxbgxb.20220409

Previous Articles    

Parameter identification for SCR systems based on improved chaos optimization algorithm

Jing-hua ZHAO1,2(),Shi-hao DU1,Liang-wei LIU1,3,Yun-feng HU2,Yao SUN2(),Fang-xi XIE2   

  1. 1.College of Computer,Jilin Normal University,Siping 136002,China
    2.State Key Laboratory of Automotive Simulation and Control,Jilin University,Changchun 130022,China
    3.College of Information Technology,Changchun Finance College,Changchun 130028,China
  • Received:2022-04-14 Online:2024-02-01 Published:2024-03-29
  • Contact: Yao SUN E-mail:zhaojh08@mails.jlu.edu.cn;syao@jlu.edu.cn

Abstract:

The SCR system is an important component of the emission aftertreatment systems for diesel engines and is primarily responsible for reducing NOx emissions. With increasingly stringent emission regulations, the control technology based on precise models for SCR systems is becoming an inevitable choice. During the working process of SCR systems, the model parameters will be shifted due to aging, wear and other effects. In particular, catalyst sulfur poisoning can cause a severe drop in the maximum ammonia adsorption capacity, which can lead to the failure of the SCR system. In this paper, a stepped-up chaos optimization algorithm with single search algorithm (SCOA+SSA) is proposed to solve multi-parameter online identification for SCR systems. This method can simultaneously identify eight key parameters in the chemical reaction kinetics of the SCR system. The experimental results show that this method can identify new system parameters in real time when the maximum adsorption capacity of ammonia decreases in steps, that as compared to the traditional SCOA method, the identification accuracy of the proposed SCOA+SSA method is improved by 5.44% with a computational time penalty of 2.9%.

Key words: automatic control technology, parameter online identification, stepped-up chaos optimization algorithm, SCR systems

CLC Number: 

  • TP273

Fig. 1

Flow chart of SCOA+SSA algorithm"

Table 1

Nomenclature of parameters"

符号描述
EFv排气体积流量和SCR系统体积的比值/(m3·s-1
CNOx,inSCR系统入口NO x 浓度/(mol·m-3
CNOxSCR系统出口NO x 浓度/(mol·m-3
CNH3,inSCR系统入口NH3浓度/(mol·m-3
CNH3SCR系统出口NH3浓度/(mol·m-3
θMAXSCR催化剂的最大氨吸附能力
θcrilSCR催化器表面氨的临界覆盖度
EFM排气质量流量/(g·s-1
R气体常数
TSCR系统内部温度/°C
P0大气压/Pa
M排气摩尔质量/(g·mol-1
VSCR系统体积/L
CHNCO异氰酸浓度/(mol·m-3
E1异氰酸水解反应活化能/(J·mol-1
k1异氰酸水解反应速率因子
m1反应特性参数
r1异氰酸水解反应速率/s-1
r2NH3吸附反应速率/s-1
r3NH3解吸附反应速率/s-1
r4NO x 催化还原反应速率/s-1
r5NH3氧化反应速率/s-1

Table 2

Nomenclature of parameters to be identified"

参数描述
E2NH3吸附反应活化能
E3NH3解吸附反应活化能
E4NO x 催化还原反应活化能
E5NH3氧化反应活化能
k2NH3吸附反应速率因子
k3NH3解吸附反应速率因子
k4NO x 催化还原反应速率因子
k5NH3氧化反应速率因子

Fig.2

Test data of SCR systems under the WHTC cycle"

Fig.3

Comparison of parameter identification between the PE toolbox and the COA method"

Table 3

Comparison of identification accuracy between the PE toolbox and the COA method"

评价指标NO x 模型精准度/%NH3模型精准度/%
PE98.5690.23
COA84.8274.97

Fig.4

Flow chart for online identification parameters"

Fig. 5

Comparison of parameter identification under the two-stage change of the parameter"

Table 4

Results of parameter identification between the algorithms under the first stage"

参数COAPCOA12SCOASCOA+SSA
E2894.18600.11234.8397.48
E32.6×1065.9×1067.3×1062.7×105
E42992.072789.352793.00404.18
E516 697.7436 386.5217 167.4816 254.76
k2811.66495.33377.55264.92
k31.1×1071.8×1071.7×10641 235.36
k41.0×1061.0×1061.5×1078.5×105
k517 543.168107.4374 015.2510 042.43

Table 5

Comparison of the accuracy between the algorithms under the first stage"

评价指标NO x 模型精准度/%NH3模型精准度/%
COA84.8274.97
PCOA1289.7880.59
SCOA93.8682.14
SCOA+SSA97.5190.18

Table 6

Results of parameter identification between the algorithms under the second stage"

参数COAPCOA12SCOASCOA+SSA
E21000.4950.41910.21030.8
E31.0e+069.6e+064.0e+051.8e+06
E44000.94233.53297.41970.1
E518 199.118 198.318 198.018 197.7
k22532.32076.67178.22059.2
k31.2e+063.0e+064090.65.7e+06
k41.2e+062.5e+061.0e+061.8e+05
k57285.07286.07285.27285.0

Table 7

Comparison of the accuracy between the algorithms under the second stage"

评价指标NO x 模型精准度/%NH3模型精准度/%
COA88.1169.22
PCOA1291.0276.23
SCOA84.5875.79
SCOA+SSA83.8686.55

Table 8

Overall comparison of the accuracy between the algorithms under the two-stage"

评价指标NO x 模型精准度/%NH3模型精准度/%
COA86.4772.10
PCOA1290.4078.41
SCOA89.2278.97
SCOA+SSA90.6988.37

Fig. 6

Comparison of time-consuming between the algorithms under the two-stage"

1 Zhao J H, Gong X, Hu Y F, et al. An ammonia coverage ratio observing and tracking controller: stability analysis and simulation evaluation[J]. Sci China Inf Sci, 2019, 62: 062201.
2 Zhang H, Chen P E, Wang J M, et al. Integrated study of inland-vessel diesel engine two-cell SCR systems with dynamic references[J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(3): 1195-1206.
3 Zhao J H, Hu Y F, Gong X, et al. Modelling and control of urea-SCR systems through the triple-step non-linear method in consideration of time-varying parameters and reference dynamics[J]. Transactions of the Institute of Measurement Control, 2018, 40(1): 287-302.
4 Zhao J H, Zhou S T, Hu Y F, et al. Open-source dataset for control-oriented modelling in diesel engines[J]. Sci China Inf Sci, 2019, 62(7): 077201.
5 Chen P E, Wang J M. Coordinated active thermal management and selective catalytic reduction control for simultaneous fuel economy improvement and emissions reduction during low-temperature operations[J]. Dyn Syst Meas Control, 2015, 13(7): 634-641.
6 Zhao J H, Hu Y F, Gao B Z. Sequential optimization of eco-driving taking into account fuel economy and emissions[J]. IEEE Access, 2019, 4(99): 1-13.
7 Ma Y, Wang J M. Integrated power management and aftertreatment system control for hybrid electric vehicles with road grade preview[J]. IEEE Trans Veh Technol, 2017, 66: 10935-10945.
8 Luo X. Parameter identification of the photovoltaic cell model with a hybrid Jaya-NM algorithm[J]. International Journal for Light Electron Optics, 2018, 171(1): 200-203.
9 Gao F C, Han L X. Implementing the Nelder-Mead simplex algorithm with adaptive parameters[J]. Computational Optimization and Applications, 2010, 51(1): 259-277.
10 Liu Y, Heidari A, Ye X, et al. Boosting slime mould algorithm for parameter identification of photovoltaic models[J]. Energy, 2021(5): 121-128.
11 Tang Z Z, Gu Q F, Ni W, et al. Parameter identification of ship integrative load model based on improved chaos optimization algorithm[J]. Ship Science and Technology, 2017, 12(1): 56-63.
12 Yuan X F, Zhang T, Dai X S, et al. Master-slave model-based parallel chaos optimization algorithm for parameter identification problems[J]. 2016, 83(3): 1727-1741.
13 李冬琴. 加速混沌优化算法的改进及其在船型论证中的应用[J].江苏科技大学学报:自然科学版, 2010, 24(4): 5-11.
Li Dong-qin. Improvement of stepped-up chaos optimization algorithm and its application to ship demonstration[J]. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2010, 24(4): 5-11.
14 Zhang G H, Xing K Y, Zhang G Y, et al. Memetic algorithm with meta-Lamarckian learning and simplex search for distributed flexible assembly permutation flowshop scheduling problem[J]. IEEE Access, 2020, 8: 96115-96128.
15 Lu Y T, Zhou Y Q, Wu X L. A hybrid lightning search algorithm-simplex method for global optimization[J]. Discrete Dynamics in Nature Society, 2017(2017): 1-23.
16 Kong X S, Zheng D B. A knowledge-informed simplex search method based on historical quasi-gradient estimations and its application on quality control of medium voltage insulators[J]. Processes, 2021, 9(5): 770-779.
17 Chen H, Li W, Yang X. A whale optimization algorithm with chaos mechanism based on quasi-opposition for global optimization problems[J]. Expert Systems with Applications, 2020, 158(113): 6-12.
18 Musanna F, Dangwal D, Kumar S. Novel image encryption algorithm using fractional chaos and cellular neural network[J]. Journal of Ambient Intelligence Humanized Computing, 2021(6): 1-22.
19 孙耀, 胡云峰, 周杰敏, 等. 基于分层控制器的SCR系统滚动时域优化控制方法[J]. 吉林大学学报: 工学版, 2023, 53(1): 61-71.
Sun Yao, Hu Yun-feng, Zhou Jie-min, et al. Moving horizon optimization control of SCR system based on hierarchical controller[J]. Journal of Jilin University (Engineering and Technology Edition), 2023, 53(1): 61-71.
20 赵靖华, 胡云峰, 高炳到, 等. 基于尿素选择催化还原系统的氨覆盖率非线性降维观测器设计[J]. 吉林大学学报: 工学版, 2017, 49(2): 583-590.
Zhao Jing-hua, Hu Yun-feng, Gao Bing-zhao, et al. Design of nonlinear reduced-order observer for ammonia coverage based on urea-SCR systems[J]. Journal of Jilin University (Engineering and Technology Edition), 2017, 49(2): 583-590.
[1] Shou-rui WANG,Wu-yin JIN,Zhi-yuan RUI,Xia ZHANG. Payload swing control for 3D overhead crane based on fast nonsingular terminal sliding mode [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(12): 3508-3517.
[2] Yao SUN,Yun-feng HU,Jie-min ZHOU,Huan CHENG,Ting QU,Jing-hua ZHAO,Hong CHEN. Moving horizon optimization control of SCR system based on hierarchical controller [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(1): 61-71.
[3] Jin-wu GAO,Zhi-huan JIA,Xiang-yang WANG,Hao XING. Degradation trend prediction of proton exchange membrane fuel cell based on PSO⁃LSTM [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2192-2202.
[4] Jin-wu GAO,Yi-lin WANG,Hua-yang LIU,Yi-da WANG. Decoupling control for proton exchange membrane fuel cell air supply system based on sliding mode observer [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2156-2167.
[5] Ang LI,Hong-yuan YANG,Xiao-meng LEI,Kai-wen SONG,Cheng-hui QIAN. Closed-loop control of traveling attitude of hexapod robot based on equivalent connecting link model [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(7): 1696-1708.
[6] Hang ZHU,Han-bo YU,Jia-hui LIANG,Hong-ze LI. Improved algorithm of UAV search based on electric field model and simulation analysis [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(12): 3029-3038.
[7] Bin XIAN,Shi-jing ZHANG,Xiao-wei HAN,Jia-ming CAI,Ling WANG. Trajectory planning for unmanned aerial vehicle slung⁃payload aerial transportation system based on reinforcement learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2259-2267.
[8] Fang XU,Jun-ming ZHANG,Yun-feng HU,Ting QU,Yi QU,Qi-fang LIU. Lateral and longitudinal coupling real⁃time predictive controller for intelligent vehicle path tracking [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2287-2294.
[9] Guang-xin HAN,Ju-le ZHAO,Yun-feng HU. Moving horizon linear quadratic regulator control for ball and plate system with input constraints [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 1982-1989.
[10] Shu-you YU,Huan CHANG,Ling-yu MENG,Yang GUO,Ting QU. Disturbance observer based moving horizon control for path following problems of wheeled mobile robots [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 1097-1105.
[11] Ai-guo WU,Jun-qing HAN,Na DONG. Adaptive sliding mode control based on ultra⁃local model for robotic manipulator [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1905-1912.
[12] Wei WANG,Jian-ting ZHAO,Kuan-rong HU,Yong-cang GUO. Trajectory tracking of robotic manipulators based on fast nonsingular terminal sliding mode [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 464-471.
[13] Fu LIU,Yi AN,Bo DONG,Yuan-chun LI. Decentralized energy guaranteed cost decentralized optimal control of reconfigurable robots based on ADP [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 342-350.
[14] Xing-tian QU,Xue-xu WANG,Hui-chao SUN,Kun ZHANG,Long-wei YAN,Hong-yi WANG. Fuzzy self⁃adaptive PID control for fused deposition modeling 3D printer heating system [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 77-83.
[15] Miao-miao MA,Jun-jun PAN,Xiang-jie LIU. Model predictive load frequency control of microgrid with electrical vehicles [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1644-1652.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!