Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (5): 1323-1331.doi: 10.13229/j.cnki.jdxbgxb.20220744

Previous Articles    

Risk prediction model of passenger car following behavior under truck movement interruption of two-lane highway in mountainous area

Xiao-feng JI1,2(),Ying-hao XU1,2,Yong-ming PU1,2,Jing-jing HAO1,2,Wen-wen QIN1,2()   

  1. 1.School of Transportation Engineering, Kunming University of Science and Technology, Kunming 650504, China
    2.Yunnan Modern Logistics Engineering Research Center, Kunming 650604, China
  • Received:2022-09-03 Online:2024-05-01 Published:2024-06-11
  • Contact: Wen-wen QIN E-mail:yiluxinshi@sina.com;qinww@kust.edu.cn

Abstract:

Taking the typical mountainous two-lane highway bend and straight road as the research object, based on traffic trajectory data extracted by UAV aerial video, the risk prediction model of passenger car following under the movement interruption of truck was constructed by the light gradient boosting machine algorithm (LGBM). The support vector machine (SVM) and random forest machine (RF) were used to verify the validity of the model, and the risk mechanism of the key characteristic parameters of the model was analyzed. The experimental results show that the accuracy of the risk prediction model based on the LGBM algorithm is 96.9%, which is superior. The speed difference and the following distance are the key characteristic parameters of the model, and the single factor importance on the straight road is greater. Compared with the curve, the dangerous driving behavior of straight road section is prominent, and the unstable following characteristics such as large lateral offset are obvious; the results of the model interpreter show that when the speed difference is less than 0.5 m/s and the car-following distance is greater than 40 m, it is a safe car-following state.

Key words: traffic and transportation safety engineering, risk prediction of car-following, LGBM algorithm, truck movement interruption, mountain two-lane highway

CLC Number: 

  • U491.31

Table 1

Conflict risk classification rules"

风险等级含义冲突可能性划分规则
四级车辆间具有严重冲突,存在较大碰撞风险碰撞时间<1%分位值
三级车辆间同时具有严重和一般冲突,存在潜在碰撞风险1%分位值碰撞时间<5%分位值
二级车辆间存在一般冲突,可及时避让5%分位值碰撞时间<85%分位值
一级车辆间存在轻微冲突,可安全行驶85%分位值碰撞时间

Table 2

Model evaluation indicators"

指标(符号)含义公式
查准率(P预测样本有多少概率真正的正样本P=TPTP+FP
查全率(R有多少比例正样本被正确预测R=TPTP+FN
F1值(F1)PR的综合指标F1=2×P×RP+R

Fig. 1

UAV video acquisition section"

Fig. 2

Geroge process of extracting car following track data"

Table 3

Single sample t-test of key characteristic parameters"

变量(符号)单位路段均值标准差差分的95%置信区间Sig.(双侧)
下限上限
车头时距(Tijs直道2.911.432.862.960
弯道3.531.893.473.590
跟驰间距(Sijm直道21.2419.0520.6521.840
弯道24.0113.8023.5524.470
跟驰速度差(Vijm/s直道0.882.190.810.960.01
弯道0.152.190.080.220
小客车相对偏移(Lm直道-0.430.21-0.65-0.220
弯道-0.280.11-0.32-0.230
小客车速度(Vjm/s直道39.5514.6039.0740.040
弯道35.7418.4035.1636.310

Fig.3

Influence of passenger car speed on headway"

Fig.4

Speed distribution frequency of passenger car under different scenarios"

Fig.5

Extremum distribution of lateral offset ofpassenger car"

Fig.6

TTCcumulative frequency distribution oftrajectory data"

Table 4

Risk level threshold"

风险等级TTC/s
四级(0,2.9)

三级

二级

一级

(2.9,5.9)

(5.9,8.3)

(8.3,+

Fig.7

Principal component variance contribution rate"

Table 5

Key characteristic parameters"

类别参数物理量计算方式
货车货车速度Vi/(km·h-1/
货车加速度Ai/(m·s-2/
货车轨迹曲率Cur/
货车长度H/m/
小客车小客车速度Vj/(km·h-1/
小客车加速度Aj/(m·s-2/
小客车相对偏移L/mxi-xj,向东xj-xi,向西
交通流车头时距Tij/sTij=(Sij+H)/Vj
跟驰间距Sij/mSij=(xi-xj)2+(yi-yj)2-H
速度差Vij/(m·s-1Vi-Vj

Fig.8

Machine learning confusion matrix"

Table 6

Derived indicators of confusion matrix"

预测模型PrecisionRecallF1值
LGBM0.9690.9650.966
SVM0.9140.9070.907
RF0.9650.9630.963

Fig.9

Importance ranking of key characteristicparameters of LGBM"

Fig.10

Risk probability curve diagram"

1 戢晓峰,卢梦媛,覃文文.货车移动遮断影响下的小客车驾驶行为识别[J].交通运输系统工程与信息,2021, 21(5):174-182.
Ji Xiao-feng, Lu Meng-yuan, Qin Wen-wen. Identification of passenger car driving behavior under the influence of truck moving interruption[J]. Transportation Systems Engineering and Information Technology, 2021,21(5): 174-182.
2 Moridpour S, Mazloumi E, Mesbah M. Impact of heavy vehicles on surrounding traffic characteristics[J]. Journal of Advanced Transportation, 2015, 49(4): 535-552.
3 Gazis D C, Herman R. The moving and "phantom" bottlenecks[J]. Transportation Science, 1992, 26(3): 223-229.
4 Aghabayk K, Sarvi M, Young W. Understanding the dynamics of heavy vehicle interactions in car-following[J]. Journal of Transportation Engineering, 2012, 138(12): 1468-1475.
5 Sarvi M. Heavy commercial vehicles‐following behavior and interactions with different vehicle classes[J]. Journal of Advanced Transportation, 2013, 47(6): 572-580.
6 Xu C, Liu P, Wang W, et al. Evaluation of the impacts of traffic states on crash risks on freeways[J]. Accident Analysis & Prevention, 2012, 47: 162-171.
7 Hossain M, Muromachi Y. A Bayesian network based framework for real-time crash prediction on the basic freeway segments of urban expressways[J]. Accident Analysis & Prevention, 2012, 45: 373-381.
8 杨奎,余荣杰,王雪松.基于车道集计交通流数据的事故风险评估分析[J].同济大学学报,2016,44(10): 1567-1572.
Yang Kui, Yu Rong-jie, Wang Xue-song. Application of aggregated lane data from dual-loop detector to crash risk evaluation[J]. Journal of Tongji University, 2016, 44(10): 1567-1572.
9 Song Y, Kou S, Wang C. Modeling crash severity by considering risk indicators of driver and roadway: a Bayesian network approach[J]. Journal of Safety Research, 2021, 76: 64-72.
10 李志慧,孙雅倩,陶鹏飞,等.交通事故后的交通运行风险状态等级预测方法[J].吉林大学学报:工学版,2022,52(1):127-135.
Li Zhi-hui, Sun Ya-qian, Tao Peng-fei, et al. Forecasting method of traffic operation risk level after traffic accident[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(1): 127-135.
11 Sayed T, Zaki M H, Autey J. Automated safety diagnosis of vehicle-bicycle interactions using computer vision analysis[J]. Safety Science, 2013 59(11): 163-172.
12 朱顺应,蒋若曦,王红,等.机动车交通冲突技术研究综述[J].中国公路学报,2020,33(2):15-33.
Zhu Shun-ying, Jiang Ruo-xi, Wang Hong, et al. Summary of research on vehicle traffic conflict technology[J]. China Journal of Highway and Transport, 2020, 33(2): 15-33.
13 戢晓峰,谢世坤,覃文文,等.基于轨迹数据的山区危险性弯道路段交通事故风险动态预测[J].中国公路学报,2022,35(4):277-285.
Ji Xiao-feng, Xie Shi-kun, Qin Wen-wen, et al. Dynamic prediction of traffic accident risk in dangerous mountain bends based on trajectory data[J]. China Journal of Highways, 2022, 35(4): 277-285.
[1] Jie HE,Chang-jian ZHANG,Xin-tong YAN,Chen-wei WANG,Yun-tao YE. Analyzing traffic crash risk of freeway characteristics based on micro⁃kinetic parameters [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(1): 162-172.
[2] SUN Lu, XU Jian, CUI Xiang-min. Panel data models for analysis and prediction of crash count [J]. 吉林大学学报(工学版), 2015, 45(6): 1771-1778.
[3] XU Jian, SUN Lu. Modeling of excess zeros issue in crash count andysis [J]. 吉林大学学报(工学版), 2015, 45(3): 769-775.
[4] JIN Li-sheng, WANG Yan, LIU Jing-hua, WANG Ya-li, ZHENG Yi. Front vehicle detection based on Adaboost algorithm in daytime [J]. 吉林大学学报(工学版), 2014, 44(6): 1604-1608.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!