Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (7): 1876-1886.doi: 10.13229/j.cnki.jdxbgxb.20230414

Previous Articles    

Moisture-electro-mechanical coupling smoothed finite element method based on asymptotic homogenization

Jian-xiao ZHENG1,2(),Wen-bo WANG1,Jin-song LIU1(),Li-ming ZHOU3,Yu LI4   

  1. 1.School of Mechanical and Electrical Engineering,Xi'an University of Architecture and Technology,Xi′an 710055,China
    2.Shaanxi Provincial Key Laboratory of Nanomaterials and Technology,Xi′an 710055,China
    3.School of Mechanical and Aerospace Engineering,Jilin University,Changchun 130022,China
    4.Shanghai Baoye Group Corp. ,Ltd. ,Shanghai 201999,China
  • Received:2023-04-27 Online:2024-07-01 Published:2024-08-05
  • Contact: Jin-song LIU E-mail:zjx@xauat.edu.cn;592362106@qq.com

Abstract:

Aiming at the mechanical property analysis problem of piezoelectric composite materials with microstructure-based moisture-electro-mechanical multi-physical-field coupling, the moisture-electro-mechanical coupling smoothed finite element method based on asymptotic homogenization was proposed. The theoretical basis of this method includes the basic equation of piezoelectric composite materials, the effective performance parameters predicted by asymptotic homogenization, and the moisture-electro-mechanical coupling effect of piezoelectric composite materials. The dynamic control equation of this method was deduced, and the structural dynamic problems of piezoelectric composite materials were solved by applying the Wilson-θ method. The effects of moisture variation on the structure natural frequency and dynamic response were studied. The results were compared with those of the finite element method to verify the correctness and validity of the method. Therefore, this method has a broad application prospect for analyzing the multi-field coupling mechanical properties of piezoelectric composite components.

Key words: solid mechanics, finite element methods, moisture-electro-mechanical coupling, asymptotic method

CLC Number: 

  • TB115

Fig.1

Calculation model of piezoelectric composite material"

Fig.2

Type 1-3 piezoelectric composites in moist environments"

Fig.3

Generalized boundary conditions for piezoelectric composites in moist environments"

Fig.4

Division of smooth sub-elements and arrangementof nodes in quadrilateral smooth elements"

Fig.5

Piezoelectric composite cantilever"

Table 1

Material parameters of fibers and matrix in piezoelectric composites"

材料参数BaTiO3(基体)PZT-7(纤维)
C11/GPa150133.4
C12/GPa65.6383.2
C13/GPa65.9478.8
C33/GPa145.5101.2
C44/GPa43.8616.7
e31/(C·m-2-5.6-4.924
e33/(C·m-217.3613.96
e15/(C·m-211.40413.31
λ11/(10-9C2·Nm-212.8413.04
λ33/(10-9C2·Nm-215.059.76
p1=p2/(10-4C·m-2K)-2.5
β1=β3/(mC·kg-10
α1M/(m3·kg-10
α3M/(10-4 m3·kg-11.1
α1θ=α3θ/(10-6·K-12.0
ρ/(kg·m-37 6007 600

Table 2

Equivalent performance parameters of piezoelectric composite cantilever beam predicted based onasymptotic homogenization method"

等效性能参数数值等效性能参数数值等效性能参数数值
Cˉ11/GPa139.0eˉ15/(C·m-212.72λˉ11/(nF·m-113.05
Cˉ12/GPa77.5eˉ33/(C·m-215.06λˉ33/(nF·m-111.51
Cˉ13/GPa74.1eˉ13/(C·m-2?5.2pˉ1/(10-4C·m-2K)?2.5
Cˉ33/GPa115.2βˉ1=βˉ3/(mC·kg-10pˉ3/(10-4C·m-2K)?2.5
Cˉ44/GPa25.6αˉ1M/(m3·kg-10αˉ1θ/(10-6·K-12.0
ρˉ/(kg·m-37600αˉ3M/(10-4m3·kg-11.1αˉ3θ/(10-6·K-12.0

Fig.6

Discrete model of four-nodal distortion element"

Fig.7

The first 10 natural frequency values of piezoelectric composite materials"

Fig.8

Comparison of solution results between CS-FEM (distorted mesh) and FEM (90×6 mesh)"

Table 3

Comparison of calculation time between FEM and CS-FEM with different number of elements"

计算方法单元总数/计算时间
FEM60/0.107 s240/2.184 s480/3.694 s2 160/196.524 s
CS-FEM60/0.144 s240/2.307 s480/3.689 s2 160/193.869 s

Fig.9

Piezoelectric composite energy harvester under force loading"

Fig.10

Discrete model of piezoelectric composite energy harvester"

Fig.11

Generalized displacement at point A"

Fig.12

Piezoelectric composite sensors under humiditychanges"

Table 4

Material parameters of PZT-5 and polymer"

材料参数聚合物(基体)PZT-5(纤维)
C11/GPa3.86121
C12/GPa2.5775.4
C13/GPa2.5775.2
C33/GPa3.86111
C44/GPa0.6421.1
e31/(C·m-2?5.4
e33/(C·m-215.8
e15/(C·m-212.3
λ11/(10-9C2·Nm-28.11
λ33/(10-9C2·Nm-27.35
α1M/(10-4m3·kg-10
α3M/(10-4 m3·kg-10.44
β1=β3/(mC·kg-10
α1θ/(10-6·K-18.53
α3θ/(10-6·K-11.99
p1=p2/(10-5C·m-2·K)?2.5
ρ/(kg·m-37 6007 600

Table 5

Equivalent performance parameters of piezoelectric composite sensors predicted based on asymptotic homogenization method"

等效性能参数数值等效性能参数数值等效性能参数数值
Cˉ11/GPa13.278 01eˉ15/(C·m-20.052 676λˉ11/(nF·m-10.420 31
Cˉ12/GPa7.019 85eˉ33/(C·m-212.984 637λˉ33/(nF·m-15.105 80
Cˉ13/GPa7.872 01eˉ13/(C·m-2?0.394 201pˉ1/(10-5C·m-2·K)?2.5
Cˉ33/GPa42.316 62αˉ1M/(10-4·m3·kg-10pˉ3/(10-5C·m-2·K)?2.5
Cˉ44/GPa3.188 67αˉ3M/(10-4·m3·kg-10.44αˉ1θ/(10-6K-18.53
ρˉ/(kg·m-37 600βˉ1=βˉ3/(m·C·kg-10αˉ3θ/(10-6K-11.99

Fig.13

Generalized displacement at sensor point A"

1 Dagdeviren C, Joe P, Tuzman O L, et al. Recent progress in flexible and stretchable piezoelectric devices for mechanical energy harvesting, sensing and actuation[J]. Extreme Mechanics Letters, 2016, 9:269-281.
2 Sappati K K, Bhadra S. Piezoelectric polymer and paper substrates: a review[J]. Sensors, 2018, 18:No.3605.
3 Akdogan E K, Allahverdi M, Safari A. Piezoelectric composites for sensor and actuator applications[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2005, 52(5): 746-775.
4 Bie Y H, Cui X Y, Li Z C. A coupling approach of state-based peridynamics with node-based smoothed finite element method[J]. Computer Methods in Applied Mechanics and Engineering, 2018, 331: 675-700.
5 Zeng Y, Jiang L, Sun Y,et al. 3D-printing piezoelectric composite with honeycomb structure for ultrasonic devices[J]. Micromachines, 2020, 11(8):No.E713.
6 Zhou L, Ren S, Meng G,et al. A multi-physics node-based smoothed radial point interpolation method for transient responses of magneto-electro-elastic structures[J]. Engineering Analysis with Boundary Element, 2019, 101: 371-384.
7 郑建校, 段志善, 周立明. 基于渐近均匀化的力-电-热耦合光滑有限元法研究[J]. 中南大学学报: 自然科学版, 2023, 54(4): 1325-1335.
Zheng Jian-xiao, Duan Zhi-shan, Zhou Li-ming. Research on thermo-electro-mechanical coupling smoothed finite element method based on asymptotic homogenization[J]. Journal of Central South University (Science and Technology), 2023, 54(4):1325-1335.
8 Chan H L W, Unsworth J. Simple model for piezoelectric ceramic/polymer 1-3 composites used in ultrasonic transducer applications[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1989, 36(4): 434-441.
9 Hagood N, Bent A. Development of piezoelectric fiber composites for structural actuation[C]//The 34th Conference on Structures, Structural Dynamics, and Materials of AIAA, La Jolla, USA, 1993: No.1717.
10 Safari A, Janas V, Panda R K. Fabrication of fine-scale 1-3 Pb(Zr x,Ti1- x )O3/ceramic/polymer composites using a modified lost mold method[J]. Int Soc Opt Eng, 1996, 2721: 251-262.
11 Bisegna P, Luciano R. Variational bounds for the overall properties of piezoelectric composites[J]. Journal of the Mechanics and Physics of Solids, 1996, 44(4): 583-602.
12 Meng G, Wang L, Zhang Q,et al. Coupled thermal-electrical-mechanical inhomogeneous cell-based smoothed finite element method for transient responses of functionally graded piezoelectric structures to dynamic loadings[J]. International Journal of Computational Methods, 2020, 17(6): No.1950012.
13 Zheng J, Duan Z, Zhou L. A coupling electromechanical cell-based smoothed finite element method based on micromechanics for dynamic characteristics of piezoelectric composite materials[J]. Advances in Materials Science and Engineering, 2019, No.4913784.
14 Yang H, Cui X Y, Li S, et al. A stable node-based smoothed finite element method for metal forming analysis[J]. Computational Mechanics, 2019, 63:1147-1164.
15 Aliqué M, Simão C D, Murillo G, et al. Fully-printed piezoelectric devices for flexible electronics applications[J]. Advances Materials Technologies, 2021, 6(3): No. 2001020.
16 Pettermann H E, Suresh S. A comprehensive unit cell model: a study of coupled effects in piezoelectric 1-3 composites[J]. International Journal of Solids and Structures, 2000, 37(39): 5447-5464.
17 Berger H, Kari S, Gabbert U, et al. An analytical and numerical approach for calculating effective material coefficients of piezoelectric fiber composites[J]. International Journal of Solids and Structures, 2005, 42(21/22): 5692-5714.
18 Poizat C, Sester M. Effective properties of composites with embedded piezoelectric fibres[J]. Computational Materials Science, 1999, 16(1/4): 89-97.
19 Zhang F, Feng P, Wang T,et al. Mechanical-electric response characteristics of 1—3 cement based piezoelectric composite under impact loading[J]. Construction and Building Materials, 2019, 228: No.116781.
[1] Zhong-hua SHI,Quan-wei SONG,Zhen-hang KANG,Qiang XIE,Ji-feng ZHANG. Numerical simulation and experiment on ultrasonic deicing system of airfoil structure [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(7): 1561-1573.
[2] Xiao⁃qin ZHOU,Lu YANG,Lei ZHANG,Li⁃jun CHEN. Finite element analysis of hinging octahedron structure withnegative compressibility [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 865-871.
[3] SUN Rong-jun, GU Shuan-cheng, JU Pei, GAO Ke. Optimal design of new arc angle PDC drill bit for coal mining based on finite element method [J]. 吉林大学学报(工学版), 2017, 47(6): 1991-1998.
[4] MENG Guang-wei,LI Xiao-lin,LI Feng,ZHOU Li-ming,WANG Hui. Smoothed multiscale finite element method for flow in fractured media [J]. 吉林大学学报(工学版), 2015, 45(2): 481-486.
[5] CAI Bin,MENG Guang-wei, DONG Xin,LI Feng. Reliability analysis for transverse crack in concrete structure based on fuzzy invalidation criterion [J]. 吉林大学学报(工学版), 2011, 41(4): 1029-1033.
[6] PENG Hui-fen, MENG Guang-wei, ZHOU Li-ming, LI Feng. Virtual crack closure technique based on wavelet finite element method [J]. 吉林大学学报(工学版), 2011, 41(05): 1364-1368.
[7] MENG Guang-Wei, ZHOU Li-Ming, LI Feng. Fuzzy elementfree Galerkin method for the plane with crack [J]. 吉林大学学报(工学版), 2010, 40(增刊): 287-0292.
[8] MENG Guang-Wei, CA Bin, LI Feng, DONG Xin. New method for structural reliability analysis by combining curve fitting with Monte Carlo simulation [J]. 吉林大学学报(工学版), 2010, 40(增刊): 293-0296.
[9] MENG Guang-Wei, ZHOU Li-Ming, LI Feng, SHA Li-Rong. Perturbation stochastic local orthogonal elementfree Galerkin method [J]. 吉林大学学报(工学版), 2010, 40(06): 1556-1561.
[10] WU Deng-feng,XU Tao,SUN Rui-heng,YANG Rong,XUAN Wei-qi,Tatsuo Yoshino. Meshless method based on wavelet basis function [J]. 吉林大学学报(工学版), 2010, 40(03): 740-0744.
[11] MA Liang,CHEN Su-huan,MENG Guang-wei . Eigenvalue analysis of structures with large variations of interval parameters [J]. 吉林大学学报(工学版), 2009, 39(01): 98-102.
[12] Li Cheng, Liu Zhi-hua, Zhang Ping . Analysis on stress and displacement of a composite flywheel composed of twolayer rotor with pre-displacement [J]. 吉林大学学报(工学版), 2007, 37(04): 828-832.
[13] Cao Zong-jie,Wang Ming-wei,Quan Ji-cheng,Hu Jin-hai . Electroelastic fracture analysis of piezoelectric materials with cracks [J]. 吉林大学学报(工学版), 2006, 36(增刊2): 157-160.
[14] DONG Jin-kun, LIU Bin, ZHANG Yan-nian, YE Ye. Stability Against Coupled BendingTorsional Galloping Oscillation by Beam Wind in Tall Building 3-Dimensional Structure [J]. 吉林大学学报(工学版), 2005, 35(05): 562-0566.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!