吉林大学学报(工学版) ›› 2000, Vol. ›› Issue (4): 56-61.

Previous Articles     Next Articles

Structural Simulation of Proximal Femur

BAI Xue-fei1, ZHU Dong2, ZHANG Chun-qiu 1   

  1. 1. College of Sciences, Jilin University of Technology, Changchun 130025, China;
    2. 208 PLA Hospital, Changchun 130111, China
  • Received:2000-03-14 Online:2000-10-25

Abstract: Recently two types of discontinuities have been observed in the structural simulations of proximal femur.The first type called near field behavior appears in areas near distributed load application and is characterized by a checker board pattern of density.The second type of discontinuity called far field behavior appears remote from the load application and is characterized by strut or column like regions of elements.In fact,the far field discontinuity is an accurate representation of bone physiology and morphology.On the other hand,the near field discontinuity is a false representation of bone structure and violates the continuum assumption underlying the finite element method.The objective of this article is to devolop structural simulation of proximal femur as a self organizatinal control process by M.G.Mullender(1993),with the finite element method and bone self-optimization theory.The end configuration not only eliminates the checker-board density distribution typical of the early models,but also predicts a reasonably accurate density distribution.

Key words: structural simulation, bone self-organizational control process, bone self-optimization theory, finite element method, femur

CLC Number: 

  • Q66
[1] Carter D R, Hayes W C. The behavior of bone as a two-phase porous structure[J]. J. Bone't Surg, 1977, 59-A: 954-962.
[2] Cowin S C, Hedgedus D H. Eone remodeling 1: A theory of adaptive elasticity[J]. J. Elasticity, 1976(6) : 313-326.
[3] Huiskes R, Weinans H Van Rietbergen B S, et al. Validation of strain-adaptive bone remodeling analysis to predict bone morphology around noncemented THA[J]. Trans 37th Orthop. Res. Soc., 1991 (16): 105.
[4] Weinans H, Huiskes R, Grootenboer H J. A hypothesis concerning minimal bone density threshold levels as final stagcs of bone remodeling[J]. Trans 36th Orthop. Res. Soc., 1990 (15):78.
[5] Weinans H, Huiskes R, Grootenboer H J. The behavior of adaptive bone-remodeling stimulation models[J]. J. Eiomechanics,1992(25): 1425-1441.
[6] Christopher R Jacobs, Marc E Lenvenson, et al. Numerical instabilities in bone remodeling simulations: the advantages of a node-based finite element approach[J]. J. Biomechanics, 1995, 28( 4): 449-459.
[7] Mullender M G, HlIiskes R, Weinans H. A physiological approach to the simulation of bone remodeling as a self-organizational control process [J]. J. Biomechanics, 1994, 27(11): 1389-1394.
[8] Ei Haj A J, Mintcr S L. Rawlinson S C, et al. Cellular responscs to mcchanical loading in viro[J].J. I30ne miner, 1990(5):923-932.
[9] Carter D R, Orr T E, Fyhric D P. Relationships between loacling history and femoral cancellous bone architecture[J]. J Biomechanics, 1989 (22) : 231-244.
[10] Beaupre G S, Orr T E, Carter D R. An approach for time-dependent bone modeling and remodeling-application:a preliminary remodcling simulalion[J]. J. Orthop, 1990b(8): 662-670.
[1] BI Qiu-shi,WANG Guo-qiang,HUANG Ting-ting,MAO Rui,LU Yan-peng. Tooth strength analysis of mineral sizer by coupling discrete element method and finite element method [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1770-1776.
[2] WANG Jing-yu, YU Xu-tao, HU Xing-jun, GUO Peng, XIN Li, GUO Feng, ZHANG Yang-hui. Fluid-induced vibration and flow mechanism of automotive external rearview mirror [J]. 吉林大学学报(工学版), 2017, 47(6): 1669-1676.
[3] SUN Rong-jun, GU Shuan-cheng, JU Pei, GAO Ke. Optimal design of new arc angle PDC drill bit for coal mining based on finite element method [J]. 吉林大学学报(工学版), 2017, 47(6): 1991-1998.
[4] ZHANG Yun-long, LIU Zhan-ying, WU Chun-li, WANG Jing. Static and dynamic responses of steel-concrete composite beams [J]. 吉林大学学报(工学版), 2017, 47(3): 789-795.
[5] LIU Yu, LI Peng-fei, ZHANG Yi-min. Analysis and prediction of micro milling deformation of copper thin-wall parts [J]. 吉林大学学报(工学版), 2017, 47(3): 844-849.
[6] LIU Cheng, SHI Wen-ku, CHEN Zhi-yong, HE Wei, RONG Ru-song, SONG Huai-lan. Experiment on tooth root bending stress of driving axle hypoid gear of automobile [J]. 吉林大学学报(工学版), 2017, 47(2): 344-352.
[7] YAN Guang, ZHUANG Wei, LIU Feng, ZHU Lian-qing. Preload package and characteristics of a sensitizing effect sensor based Fiber Bragg Grating (FBG) [J]. 吉林大学学报(工学版), 2016, 46(5): 1739-1745.
[8] ZHUANG Ye, CHEN Yu-hang, YANG Ye-hai, XU Shu-fang. Twin-tube hydraulic shock absorber F-V modeling based on structure parameters [J]. 吉林大学学报(工学版), 2016, 46(3): 732-736.
[9] LIU Han-bing, SHI Cheng-lin, TAN Guo-jin. Finite element solution of composite beam with effect of shear slip [J]. 吉林大学学报(工学版), 2016, 46(3): 792-797.
[10] XIAO Xiang, HUANG En-hou, NI Ying-sheng. Theoretical analysis and experiment of the effect of flange width on beam-plates system of prestressed concrete [J]. 吉林大学学报(工学版), 2015, 45(6): 1784-1790.
[11] MENG Guang-wei,LI Xiao-lin,LI Feng,ZHOU Li-ming,WANG Hui. Smoothed multiscale finite element method for flow in fractured media [J]. 吉林大学学报(工学版), 2015, 45(2): 481-486.
[12] FU Zhi-qiang,AN Zi-jun,DU Feng-shan,DUAN Li-ying,YU Hui,YANG Fan. Elongation of rectangular tube in continuous roll forming [J]. 吉林大学学报(工学版), 2015, 45(2): 487-493.
[13] MA Yao, DONG Xiao-long, LI Ze-jun, SHEN Lin, ZHAO Hong-wei. Finite element simulation of the effect of different initial contact on nano-indentation [J]. 吉林大学学报(工学版), 2014, 44(5): 1366-1370.
[14] MA Biao, ZHAO Jia-xin, LI He-yan, NING Ke-yan, HE Chun-ping. Effect of clutches' structural parameters on thermalelastic instability [J]. 吉林大学学报(工学版), 2014, 44(4): 933-938.
[15] LI Xiao-jun,LIANG Lu-lu,XIE Cheng-wei,YANG Shuo. Auto-generation and application of virtual mechanical simulation model of asphalt concrete [J]. 吉林大学学报(工学版), 2014, 44(3): 655-660.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!