吉林大学学报(工学版) ›› 2012, Vol. 42 ›› Issue (02): 463-468.
Previous Articles Next Articles
LI Jun1,2, LI Xiong-fei1, DONG Yuan-fang1,3, ZHAO Hai-ying4
CLC Number:
| [1] Chawla N V.Data Mining for Imbalanced Datasets: an Overview.Data Mining and Knowledge Discovery Handbook [M],Heidelberg: Springer,2010: 875-886.[2] Fawcett T.An introduction to ROC analysis[J].Pattern Recognition Letters,2006,27(8): 861-874.[3] Egan J P.Signal Detection Theory and ROC Analysis,Series in Cognition and Perception [M].New York:Academic Press,1975.[4] Spackman K A.Signal detection theory: Valuable tools for evaluating inductive learning //Proc Sixth International Workshop on Machine Learning.Morgan Kaufman,San Mateo,CA,1989: 160-163.[5] Japkowicz N,Stephen S.The class imbalance problem: a systematic study [J].Intelligent Data Analysis,2002,l6:40-49.[6] Chawla N V,Japkowicz N,Kotcz A.Editorial: special issue on learning from imbalanced data sets[J].SIGKDD Exploration Newsletters,2004,6(1):1-6.[7] Elazmeh W,Japkowicz N,Matwin S.Evaluating misclassifications in imbalanced data //Proc 17th European Conference on Machine Learning,2006: 126-137.[8] Huang J,Ling C X.Using AUC and accuracy in evaluating learning algorithms[J].IEEE Trans on Knowledge and Data Engineering,2005,17:299-310.[9] Daskalaki S,Kopanas I,Avouris N.Evaluation of classifiers for an uneven class distribution problem [J].Applied Artificial Intelligence,2006,20: 381-417.[10] Kubat M,Matwin S.Adressing the curse of imbalanced training sets: one-sided selection //Proc 14th Intl Conf on Machine Learning Nashville,USA,1997:179-186.[11] Weng C G,Poon J.A new evaluation measure for imbalanced datasets //Proc Seventh Australasian Data Mining Conference (AusDM 2008),Glenelg,Australia.2008:27-32.[12] Ranawana R,Palade V.Optimized precision-anew measure for classifier performance evaluation //Proc IEEE Congress on Evolutionary Computation,2006:2254-2261.[13] Efron B,Tibshirani R.An Introduction to the Bootstrap [M].Chapman and Hall,1993. |
| [1] | DONG Sa, LIU Da-you, OUYANG Ruo-chuan, ZHU Yun-gang, LI Li-na. Logistic regression classification in networked data with heterophily based on second-order Markov assumption [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1571-1577. |
| [2] | LIU Jie, ZHANG Ping, GAO Wan-fu. Feature selection method based on conditional relevance [J]. 吉林大学学报(工学版), 2018, 48(3): 874-881. |
| [3] | CHEN Mian-shu, SU Yue, SANG Ai-jun, LI Pei-peng. Image classification methods based on space vector model [J]. 吉林大学学报(工学版), 2018, 48(3): 943-951. |
| [4] | CHEN Tao, CUI Yue-han, GUO Li-min. Improved algorithm of multiple signal classification for single snapshot [J]. 吉林大学学报(工学版), 2018, 48(3): 952-956. |
| [5] | YANG Hong-yu, XU Jin. An Android malware static detection model [J]. 吉林大学学报(工学版), 2018, 48(2): 564-570. |
| [6] | XU Jin-kai, WANG Yu-tian, ZHANG Shi-zhong. Dynamic characteristics of a heavy duty parallel mechanism with actuation redundancy [J]. 吉林大学学报(工学版), 2017, 47(4): 1138-1143. |
| [7] | DONG Li-yan, SUI Peng, SUN Peng, LI Yong-li. Novel naive Bayes classification algorithm based on semi-supervised learning [J]. 吉林大学学报(工学版), 2016, 46(3): 884-889. |
| [8] | DONG Sa, LIU Da-you, LI Li-na, OUYANG Ruo-chuan, CHAI Xiao-li. Relational neighbor algorithm based on class propagation distributions for classification in networked data with heterophily [J]. 吉林大学学报(工学版), 2016, 46(2): 522-527. |
| [9] | MA An-xiang, ZHANG Chang-sheng, ZHANG Bin, ZHANG Xiao-hong. Adaptive artificial bee colony algorithm for classification problem [J]. 吉林大学学报(工学版), 2016, 46(1): 252-258. |
| [10] | ZHENG Xin, PENG Zhen-ming, XING Yan. Novel method of evaluating image segmentation algorithms based on activity degree [J]. 吉林大学学报(工学版), 2016, 46(1): 311-317. |
| [11] | XIN Yu, YANG Jing, XIE Zhi-qiang. K-topic increment training algorithm based on LDA [J]. 吉林大学学报(工学版), 2015, 45(4): 1242-1252. |
| [12] | ZHAO Dong, HAN Xiao-yan, ZHAO Hong-wei, YU Fan-hua. IOT node load balancing strategy based on classification optimization [J]. 吉林大学学报(工学版), 2015, 45(3): 926-931. |
| [13] | SI Wei-jian, LI Xiao-lin. Low-complexity near-sources location estimation based on the idea of compression [J]. 吉林大学学报(工学版), 2015, 45(3): 991-997. |
| [14] | QI Xing-da, LI Xian-jun, LIU Si-yu, MENG Dong-hui. Differentiation research on industrial technology innovation ability by DEA and PCA [J]. 吉林大学学报(工学版), 2015, 45(3): 1017-1023. |
| [15] | LI Hai-jian,DONG Hong-hui,SHI Yuan-chao,JIA Li-min,GUO Wei-feng. Vehicle classification with a single magnetic sensor for urban road [J]. 吉林大学学报(工学版), 2015, 45(1): 97-103. |
|
||