吉林大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (1): 252-258.doi: 10.13229/j.cnki.jdxbgxb201601038

Previous Articles     Next Articles

Adaptive artificial bee colony algorithm for classification problem

MA An-xiang, ZHANG Chang-sheng, ZHANG Bin, ZHANG Xiao-hong   

  1. College of Information Science and Engineering, Northeastern University, Shenyang 110819, China
  • Received:2014-05-22 Online:2016-01-30 Published:2016-01-30

Abstract: Appropriate rule evaluation functions are important to improve the performance of classification algorithm based on rules. In order to obtain the comprehensible classification rules, an adaptive artificial bee colony algorithm, called A_ABC algorithm, is proposed. The A_ABC algorithm can adaptively select a appropriate rule evaluation function for the given data, and effectively process both discrete attributes and continuous attributes. The proposed A_ABC algorithm is evaluated by experiment using different standard real datasets, and compared with existing classification algorithms. Results show that the A_ABC algorithm can solve classification problems more effectively than the existing algorithms.

Key words: artificial intelligence, adaptive artificial bee colony algorithm, classification problem, rule evaluation function

CLC Number: 

  • TP18
[1] Muhsin H, Dino I, Rajprasad R. Reducing support vector machine classification error by implementing kalman filter[J].International Journal of Intelligent Systems and Applications, 2013, 5(9):10-18.
[2] Nowak B A, Nowicki R K, Mleczko W K. A new method of improving classification accuracy of decision tree in case of incomplete samples[C]∥The 11th International Conference on Artificial Intelligence and Soft Computing, Zakopane,Poland,2013: 448-458.
[3] Parpinelli R S, Lopes H S, Freitas A A. An ant colony based system for data mining: applications to medical data[C]∥Proceedings of Genetic and Evolutionary Computation,San Francisco, Morgan Kaufmann, 2001: 791-797.
[4] Martens D, De Backer M, Haesen R, et al. Classification with ant colony optimization[J]. IEEE Transactions on Evolutionary Computation,2007,11(5): 651-665.
[5] Holden N, Freitas A A. A hybrid PSO/ACO algorithm for discovering classification rules in data mining[J]. Journal of Artificial Evolution and Applications, 2008:316145.
[6] Shukran M A M, Chung Y Y, Yeh W C. Artificial bee colony based data mining algorithms for classification tasks[J]. Modern Applied Science,2011, 5(4):217-231.
[7] Minnaert B, Martens D, De Backer M, et al. To tune or not to tune: rule evaluation for metaheuristic-based sequential covering algorithms[EB/OL].[2012-12-23]. http://www.feb.ugent.be/nl/Ondz/wp/Papers/wp_12_769.pdf.
[8] Salama K, Abdelbar A. Exploring different rule quality evaluation functions in aco-based classification algorithms[C]∥IEEE Symposium on Swarm Intelligence, Paris, IEEE Press,2011:1-8.
[9] Janssen F, Föurnkranz J. On the quest for optimal rule learning heuristics[J]. Machine Learning, 2010, 78(3):343-379.
[10] Karaboga D, Basturk B. A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm[J]. Journal of Global Optimization, 2007, 39(3):459-471.
[11] Hettich S, Bay S D. The UCI KDD archive[EB/OL].[1996-10-12].http://kdd.ics.uci.edu.
[1] DONG Sa, LIU Da-you, OUYANG Ruo-chuan, ZHU Yun-gang, LI Li-na. Logistic regression classification in networked data with heterophily based on second-order Markov assumption [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1571-1577.
[2] GU Hai-jun, TIAN Ya-qian, CUI Ying. Intelligent interactive agent for home service [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1578-1585.
[3] WANG Xu, OUYANG Ji-hong, CHEN Gui-fen. Measurement of graph similarity based on vertical dimension sequence dynamic time warping method [J]. 吉林大学学报(工学版), 2018, 48(4): 1199-1205.
[4] ZHANG Hao, ZHAN Meng-ping, GUO Liu-xiang, LI Zhi, LIU Yuan-ning, ZHANG Chun-he, CHANG Hao-wu, WANG Zhi-qiang. Human exogenous plant miRNA cross-kingdom regulatory modeling based on high-throughout data [J]. 吉林大学学报(工学版), 2018, 48(4): 1206-1213.
[5] HUANG Lan, JI Lin-ying, YAO Gang, ZHAI Rui-feng, BAI Tian. Construction of disease-symptom semantic net for misdiagnosis prompt [J]. 吉林大学学报(工学版), 2018, 48(3): 859-865.
[6] LI Xiong-fei, FENG Ting-ting, LUO Shi, ZHANG Xiao-li. Automatic music composition algorithm based on recurrent neural network [J]. 吉林大学学报(工学版), 2018, 48(3): 866-873.
[7] LIU Jie, ZHANG Ping, GAO Wan-fu. Feature selection method based on conditional relevance [J]. 吉林大学学报(工学版), 2018, 48(3): 874-881.
[8] WANG Xu, OUYANG Ji-hong, CHEN Gui-fen. Heuristic algorithm of all common subsequences of multiple sequences for measuring multiple graphs similarity [J]. 吉林大学学报(工学版), 2018, 48(2): 526-532.
[9] YANG Xin, XIA Si-jun, LIU Dong-xue, FEI Shu-min, HU Yin-ji. Target tracking based on improved accelerated gradient under tracking-learning-detection framework [J]. 吉林大学学报(工学版), 2018, 48(2): 533-538.
[10] LIU Xue-juan, YUAN Jia-bin, XU Juan, DUAN Bo-jia. Quantum k-means algorithm [J]. 吉林大学学报(工学版), 2018, 48(2): 539-544.
[11] QU Hui-yan, ZHAO Wei, QIN Ai-hong. A fast collision detection algorithm based on optimization operator [J]. 吉林大学学报(工学版), 2017, 47(5): 1598-1603.
[12] LI Jia-fei, SUN Xiao-yu. Clustering method for uncertain data based on spectral decomposition [J]. 吉林大学学报(工学版), 2017, 47(5): 1604-1611.
[13] SHAO Ke-yong, CHEN Feng, WANG Ting-ting, WANG Ji-chi, ZHOU Li-peng. Full state based adaptive control of fractional order chaotic system without equilibrium point [J]. 吉林大学学报(工学版), 2017, 47(4): 1225-1230.
[14] WANG Sheng-sheng, WANG Chuang-feng, GU Fang-ming. Spatio-temporal reasoning for OPRA direction relation network [J]. 吉林大学学报(工学版), 2017, 47(4): 1238-1243.
[15] MA Miao, LI Yi-bin. Multi-level image sequences and convolutional neural networks based human action recognition method [J]. 吉林大学学报(工学版), 2017, 47(4): 1244-1252.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Song-shan, WANG Qing-nian, WANG Wei-hua, LIN Xin. Influence of inertial mass on damping and amplitude-frequency characteristic of regenerative suspension[J]. 吉林大学学报(工学版), 2013, 43(03): 557 -563 .
[2] CHU Liang, WANG Yan-bo, QI Fu-wei, ZHANG Yong-sheng. Control method of inlet valves for brake pressure fine regulation[J]. 吉林大学学报(工学版), 2013, 43(03): 564 -570 .
[3] LI Jing, WANG Zi-han, YU Chun-xian, HAN Zuo-yue, SUN Bo-hua. Design of control system to follow vehicle state with HIL test beach[J]. 吉林大学学报(工学版), 2013, 43(03): 577 -583 .
[4] HU Xing-jun, LI Teng-fei, WANG Jing-yu, YANG Bo, GUO Peng, LIAO Lei. Numerical simulation of the influence of rear-end panels on the wake flow field of a heavy-duty truck[J]. 吉林大学学报(工学版), 2013, 43(03): 595 -601 .
[5] WANG Tong-jian, CHEN Jin-shi, ZHAO Feng, ZHAO Qing-bo, LIU Xin-hui, YUAN Hua-shan. Mechanical-hydraulic co-simulation and experiment of full hydraulic steering systems[J]. 吉林大学学报(工学版), 2013, 43(03): 607 -612 .
[6] ZHANG Chun-qin, JIANG Gui-yan, WU Zheng-yan. Factors influencing motor vehicle travel departure time choice behavior[J]. 吉林大学学报(工学版), 2013, 43(03): 626 -632 .
[7] MA Wan-jing, XIE Han-zhou. Integrated control of main-signal and pre-signal on approach of intersection with double stop line[J]. 吉林大学学报(工学版), 2013, 43(03): 633 -639 .
[8] YU De-xin, TONG Qian, YANG Zhao-sheng, GAO Peng. Forecast model of emergency traffic evacuation time under major disaster[J]. 吉林大学学报(工学版), 2013, 43(03): 654 -658 .
[9] XIAO Yun, LEI Jun-qing, ZHANG Kun, LI Zhong-san. Fatigue stiffness degradation of prestressed concrete beam under multilevel amplitude cycle loading[J]. 吉林大学学报(工学版), 2013, 43(03): 665 -670 .
[10] XIAO Rui, DENG Zong-cai, LAN Ming-zhang, SHEN Chen-liang. Experiment research on proportions of reactive powder concrete without silica fume[J]. 吉林大学学报(工学版), 2013, 43(03): 671 -676 .