吉林大学学报(工学版) ›› 2018, Vol. 48 ›› Issue (3): 874-881.doi: 10.13229/j.cnki.jdxbgxb20170231

• Orginal Article • Previous Articles     Next Articles

Feature selection method based on conditional relevance

LIU Jie1,2, ZHANG Ping2,3, GAO Wan-fu1   

  1. 1.College of Computer Science and Technology,Jilin University,Changchun 130012,China;
    2.Symbol Computation and Knowledge Engineering of Ministry of Education,Jilin University,Changchun 130012,China;
    3.College of Software,Jilin University,Changchun 130012,China
  • Received:2017-03-13 Online:2018-05-20 Published:2018-05-20

Abstract: In feature selection, with the increasing number of selected features, the relevance between candidate features and class labels is dynamically changed. This paper presents a new definition of relevance, called Conditional Relevance (CR). That is, we give a new definition of the relevance between candidate features and class labels when each selected feature is given. Consequently, we propose a novel Conditional Relevance Feature Selection (CRFS) method based on information theory. First, the superiority of the CR is verified in theory. Then, the new feature selection algorithm is compared with seven feature selection algorithms on two different classifies and on 10 real data sets. The results show the highest accuracy and the average highest accuracy of the 10 data sets on two classifiers. Experimental results show that the new algorithm can effectively improve the classification performance.

Key words: artificial intelligence, feature selection, information theory, conditional relevance, classification

CLC Number: 

  • TP301
[1] Bennasar M,Hicks Y,Setchi R.Feature selection using joint mutual information maximisation[J]. Expert Systems with Applications,2015,42(22):8520-8532.
[2] Zhao Z,Morstatter F,Sharma S,et al.Advancing feature selection research-ASU feature selection repository[J/OL]. [2017-03-02].http:∥eprints.kku.edu.sa/65/1/ZhaoEtAl.pdf.
[3] Bolón-Canedo V,Sánchez-Maroño N,Alonso-Betanzos A, et al.A review of microarray datasets and applied feature selection methods[J]. Information Sciences,2014,282(5):111-135.
[4] 刘元宁,王刚,朱晓冬,等. 基于自适应多种群遗传算法的特征选择[J]. 吉林大学学报:工学版,2011,41(6):1690-1693.
Liu Yuan-ning,Wang Gang,Zhu Xiao-dong,et al.Feature selection based on adaptive multi-population genetic algorithm[J]. Journal of Jilin University(Engineering and Technology Edition),2011,41(6):1690-1693.
[5] 姚登举,杨静,詹晓娟. 基于随机森林的特征选择算法[J]. 吉林大学学报:工学版,2014,44(1):137-141.
Yao Deng-ju,Yang Jing,Zhan Xiao-juan.Feature selection algorithm based on random forest[J]. Journal of Jilin University(Engineering and Technology Edition),2014,44(1):137-141.
[6] Peng H C,Long F H,Ding C.Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(8):1226-1238.
[7] Yang H H, Moody J.Data visualization and feature selection: new algorithms for nongaussian data[J]. Advances in Neural Information Processing Systems,1999,12:687-693.
[8] Lin D,Tang X.Conditional infomax learning: an integrated framework for feature extraction and fusion[C]∥European Conference on Computer Vision,Graz,Austria,2006:68-82.
[9] Meyer P E,Schretter C,Bontempi G.Information-theoretic feature selection in microarray data using variable complementarity[J]. IEEE Journal of Selected Topics in Signal Processing,2008,2(3):261-274.
[10] Akadi A E,Ouardighi A E,Aboutajdine D.A powerful feature selection approach based on mutual information[J]. International Journal of Computer Science & Network Security,2008,8(4):116-121.
[11] Bennasar M,Setchi R,Hicks Y.Feature interaction maximisation[J]. Pattern Recognition Letters,2013,34(14):1630-1635.
[12] Zeng Z,Zhang H,Zhang R,et al.A novel feature selection method considering feature interaction[J]. Pattern Recognition,2015,48(8):2656-2666.
[13] 石峰,莫忠息. 信息论基础[M]. 3版. 武汉:武汉大学出版社,2014:14-52.
[14] 赵晓群. 信息论基础及应用[M]. 北京:机械工业出版社,2015:27-53.
[15] Zhao Juan,Zhou Yi-wei,Zhang Xiu-jun,et al.Part mutual information for quantifying direct associations in networks[J]. Proceedings of the National Academy of Sciences,2016,113(18):5130-5135.
[16] Schreiber T. Measuring information transport[J/OL]. [2017-03-06].http:∥citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.35.3215&rep=rep1&type=pdf.
[17] Li J D,Cheng K W,Wang S H,et al.Feature selection:a data perspective[J/OL].[2017-03-06].https:∥arxiv.org/pdf/1601.07996.pdf.
[1] DONG Sa, LIU Da-you, OUYANG Ruo-chuan, ZHU Yun-gang, LI Li-na. Logistic regression classification in networked data with heterophily based on second-order Markov assumption [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1571-1577.
[2] GU Hai-jun, TIAN Ya-qian, CUI Ying. Intelligent interactive agent for home service [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1578-1585.
[3] WANG Xu, OUYANG Ji-hong, CHEN Gui-fen. Measurement of graph similarity based on vertical dimension sequence dynamic time warping method [J]. 吉林大学学报(工学版), 2018, 48(4): 1199-1205.
[4] ZHANG Hao, ZHAN Meng-ping, GUO Liu-xiang, LI Zhi, LIU Yuan-ning, ZHANG Chun-he, CHANG Hao-wu, WANG Zhi-qiang. Human exogenous plant miRNA cross-kingdom regulatory modeling based on high-throughout data [J]. 吉林大学学报(工学版), 2018, 48(4): 1206-1213.
[5] HUANG Lan, JI Lin-ying, YAO Gang, ZHAI Rui-feng, BAI Tian. Construction of disease-symptom semantic net for misdiagnosis prompt [J]. 吉林大学学报(工学版), 2018, 48(3): 859-865.
[6] LI Xiong-fei, FENG Ting-ting, LUO Shi, ZHANG Xiao-li. Automatic music composition algorithm based on recurrent neural network [J]. 吉林大学学报(工学版), 2018, 48(3): 866-873.
[7] CHEN Mian-shu, SU Yue, SANG Ai-jun, LI Pei-peng. Image classification methods based on space vector model [J]. 吉林大学学报(工学版), 2018, 48(3): 943-951.
[8] CHEN Tao, CUI Yue-han, GUO Li-min. Improved algorithm of multiple signal classification for single snapshot [J]. 吉林大学学报(工学版), 2018, 48(3): 952-956.
[9] WANG Xu, OUYANG Ji-hong, CHEN Gui-fen. Heuristic algorithm of all common subsequences of multiple sequences for measuring multiple graphs similarity [J]. 吉林大学学报(工学版), 2018, 48(2): 526-532.
[10] YANG Xin, XIA Si-jun, LIU Dong-xue, FEI Shu-min, HU Yin-ji. Target tracking based on improved accelerated gradient under tracking-learning-detection framework [J]. 吉林大学学报(工学版), 2018, 48(2): 533-538.
[11] LIU Xue-juan, YUAN Jia-bin, XU Juan, DUAN Bo-jia. Quantum k-means algorithm [J]. 吉林大学学报(工学版), 2018, 48(2): 539-544.
[12] YANG Hong-yu, XU Jin. An Android malware static detection model [J]. 吉林大学学报(工学版), 2018, 48(2): 564-570.
[13] QU Hui-yan, ZHAO Wei, QIN Ai-hong. A fast collision detection algorithm based on optimization operator [J]. 吉林大学学报(工学版), 2017, 47(5): 1598-1603.
[14] LI Jia-fei, SUN Xiao-yu. Clustering method for uncertain data based on spectral decomposition [J]. 吉林大学学报(工学版), 2017, 47(5): 1604-1611.
[15] SHAO Ke-yong, CHEN Feng, WANG Ting-ting, WANG Ji-chi, ZHOU Li-peng. Full state based adaptive control of fractional order chaotic system without equilibrium point [J]. 吉林大学学报(工学版), 2017, 47(4): 1225-1230.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Song-shan, WANG Qing-nian, WANG Wei-hua, LIN Xin. Influence of inertial mass on damping and amplitude-frequency characteristic of regenerative suspension[J]. 吉林大学学报(工学版), 2013, 43(03): 557 -563 .
[2] CHU Liang, WANG Yan-bo, QI Fu-wei, ZHANG Yong-sheng. Control method of inlet valves for brake pressure fine regulation[J]. 吉林大学学报(工学版), 2013, 43(03): 564 -570 .
[3] LI Jing, WANG Zi-han, YU Chun-xian, HAN Zuo-yue, SUN Bo-hua. Design of control system to follow vehicle state with HIL test beach[J]. 吉林大学学报(工学版), 2013, 43(03): 577 -583 .
[4] HU Xing-jun, LI Teng-fei, WANG Jing-yu, YANG Bo, GUO Peng, LIAO Lei. Numerical simulation of the influence of rear-end panels on the wake flow field of a heavy-duty truck[J]. 吉林大学学报(工学版), 2013, 43(03): 595 -601 .
[5] WANG Tong-jian, CHEN Jin-shi, ZHAO Feng, ZHAO Qing-bo, LIU Xin-hui, YUAN Hua-shan. Mechanical-hydraulic co-simulation and experiment of full hydraulic steering systems[J]. 吉林大学学报(工学版), 2013, 43(03): 607 -612 .
[6] ZHANG Chun-qin, JIANG Gui-yan, WU Zheng-yan. Factors influencing motor vehicle travel departure time choice behavior[J]. 吉林大学学报(工学版), 2013, 43(03): 626 -632 .
[7] MA Wan-jing, XIE Han-zhou. Integrated control of main-signal and pre-signal on approach of intersection with double stop line[J]. 吉林大学学报(工学版), 2013, 43(03): 633 -639 .
[8] YU De-xin, TONG Qian, YANG Zhao-sheng, GAO Peng. Forecast model of emergency traffic evacuation time under major disaster[J]. 吉林大学学报(工学版), 2013, 43(03): 654 -658 .
[9] XIAO Yun, LEI Jun-qing, ZHANG Kun, LI Zhong-san. Fatigue stiffness degradation of prestressed concrete beam under multilevel amplitude cycle loading[J]. 吉林大学学报(工学版), 2013, 43(03): 665 -670 .
[10] XIAO Rui, DENG Zong-cai, LAN Ming-zhang, SHEN Chen-liang. Experiment research on proportions of reactive powder concrete without silica fume[J]. 吉林大学学报(工学版), 2013, 43(03): 671 -676 .