›› 2012, Vol. 42 ›› Issue (04): 887-891.

Previous Articles     Next Articles

Short-term traffic flow prediction method based on improved dynamic recurrent neural network

YANG Qing-fang1,2, ZHANG Biao2, GAO Peng2   

  1. 1. State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, China;
    2. College of Transportation, Jilin University, Changchun 130022, China
  • Received:2011-07-13 Online:2012-07-01 Published:2012-07-01

Abstract: To deal with the deficiencies of the existing prediction models based on dynamic recurrent neural network, considering the characteristics of the traffic flow itself such as complexity, nonlinearity and uncertainty, a short-term traffic flow prediction method using Elman neural network with variable gain was proposed. The real-time updates of the network were achieved by introducing a variable gain factor based on the real-time error analysis. The method was verified by the field measured data from Renmin Street, Changchun City. The results show that comparing with the existing Elman network based models the proposed method is superior on the aspects of convergence time and prediction accuracy.

Key words: engineering of communications and transportation, traffic flow prediction, dynamic recurrent neural network, variable gain factor

CLC Number: 

  • U491.2
[1] 王进,史其信. 短时交通流预测模型综述[J]. 智能交通, 2005, 6(1):92-98. Wang Jin, Shi Qi-xin. A review of the short-term traffic flow prediction methods[J]. Intelligent Transport Systems, 2005, 6(1):92-98.
[2] 杨兆升,朱中. 基于BP神经网络的路径行程时间实时预测模型[J]. 系统工程理论与实践, 1999(8):59-64. Yang Zhao-sheng, Zhu Zhong. A real-time travel time estimation model based on back propagation neural network[J]. Systems Engineering Theory & Practice, 1999(8):59-64.
[3] 董春娇,邵春福. 基于Elman神经网络的道路网短时交通流预测方法[J]. 交通运输系统工程与信息, 2010,10(1):145-151. Dong Chun-jiao, Shao Chun-fu. Short-term traffic flow forecasting of road network based on Elman neural network[J]. Journal of Transportation Systems Engineering and Information Technology, 2010, 10(1):145-151.
[4] 徐启华,丁兆奎. 一种基于动态递归神经网络的交通流量实时预测方法[J]. 淮海工学院学报, 2003,12(4):14-17. Xu Qi-hua, Ding Zhao-kui. Traffic flow real-time prediction using a dynamic recurrent neural network model[J]. Journal of Huaihai Institute of Technology, 2003,12(4):14-17.
[5] Abdalla M I. Digital detection techniques via Elman neural network[J]. Journal of Engineering and Applied Science,2002,49(6):1197-1208.
[6] Gao X Z, Ovaska S J. Genetic algorithm training of elman neural network in motor fault detection[J]. Neural Comput & Applic, 2002,11:37-44.
[7] 刘亚斌,刘雪田,肖文晖. 基于改进Elman神经网络的燃气管网实时预测[J]. 系统工程学报,2003, 18(5):475-479. Liu Ya-bin, Liu Xue-tian, Xiao Wen-hui. Forecast of gas line status at real time based on modified Elman neural network[J]. Journal of Systems Engineering, 2003,18(5):475-479.
[8] Pham D T, Liu X. Training of Elman networks and dynamic system modeling[J]. International Journal of Systems Science,1996,27(2):221-226.
[9] 夏克文,李昌彪,沈钧毅. 前向神经网络隐含层节点数的一种优化方法[J]. 计算机科学, 2005, 32(10):143-145. Xia Ke-wen, Li Chang-biao, Shen Jun-yi. An optimization algorithm on the number of hidden layer nodes in feed-forward neural network[J]. Computer Science, 2005,32(10):143-145.
[10] 许东. 基于MATLAB 6.X的系统分析与设计:神经网络[M]. 西安:西安电子科技大学出版社,2002:35-54.
[1] CHEN Yong-heng,LIU Fang-hong,CAO Ning-bo. Analysis of conflict factors between pedestrians and channelized right turn vehicles at signalized intersections [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1669-1676.
[2] LIU Xiang-yu, YANG Qing-fang, KUI Hai-lin. Traffic guidance cell division based on random walk algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1380-1386.
[3] LIU Zhao-hui, WANG Chao, LYU Wen-hong, GUAN Xin. Identification of data characteristics of vehicle running status parameters by nonlinear dynamic analysis [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1405-1410.
[4] LUAN Xin, DENG Wei, CHENG Lin, CHEN Xin-yuan. Mixed Logit model for understanding travel mode choice behavior of megalopolitan residents [J]. 吉林大学学报(工学版), 2018, 48(4): 1029-1036.
[5] CHEN Yong-heng, LIU Xin-shan, XIONG Shuai, WANG Kun-wei, SHEN Yao, YANG Shao-hui. Variable speed limit control under snow and ice conditions for urban expressway in junction bottleneck area [J]. 吉林大学学报(工学版), 2018, 48(3): 677-687.
[6] WANG Zhan-zhong, LU Yue, LIU Xiao-feng, ZHAO Li-ying. Improved harmony search algorithm on truck scheduling for cross docking system [J]. 吉林大学学报(工学版), 2018, 48(3): 688-693.
[7] CHEN Song, LI Xian-sheng, REN Yuan-yuan. Adaptive signal control method for intersection with hook-turn buses [J]. 吉林大学学报(工学版), 2018, 48(2): 423-429.
[8] SU Shu-jie, HE Lu. Transient dynamic congestion evacuation model of pedestrian at walk traffic planning crossroads [J]. 吉林大学学报(工学版), 2018, 48(2): 440-447.
[9] WANG Zhan-zhong, ZHAO Li-ying, JIAO Yu-Ling, CAO Ning-bo. Social force model of pedestrian-bike mixed flow at signalized crosswalk [J]. 吉林大学学报(工学版), 2018, 48(1): 89-97.
[10] HOU Xian-yao, CHEN Xue-wu. Use of public transit information market segmentation based onattitudinal factors [J]. 吉林大学学报(工学版), 2018, 48(1): 98-104.
[11] GAO Kun, TU Hui-zhao, SHI Heng, LI Zhen-fei. Effect of low visibility in haze weather condition on longitudinal driving behavior in different car-following stages [J]. 吉林大学学报(工学版), 2017, 47(6): 1716-1727.
[12] TAN Li-dong, LIU Dan, LI Wen-jun. Design of bionic compound eye array for traffic accident scene panorama based on fly compound eye [J]. 吉林大学学报(工学版), 2017, 47(6): 1738-1744.
[13] WEI Li-ying, CUI Yu-feng, WEI Jia-rong. Cellular automata model based on local maximum entropy lane-changing rules for electric bicycle flow [J]. 吉林大学学报(工学版), 2017, 47(5): 1436-1445.
[14] YAO Rong-han, ZHANG Xiao-tong, LIAN Lian. Optimization model for controlling reversible approach lanes at signalized intersections [J]. 吉林大学学报(工学版), 2017, 47(4): 1048-1054.
[15] FANG Rui-wei, ZHANG Xie-dong, JIANG Pan. Planning of urban rapid transportation based on SWOT-AHP analysis [J]. 吉林大学学报(工学版), 2017, 47(4): 1055-1060.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!