吉林大学学报(工学版) ›› 2018, Vol. 48 ›› Issue (2): 440-447.doi: 10.13229/j.cnki.jdxbgxb20170037

Previous Articles     Next Articles

Transient dynamic congestion evacuation model of pedestrian at walk traffic planning crossroads

SU Shu-jie1, HE Lu2   

  1. 1.College of Highway,Chang'an University, Xi'an 710061, China;
    2.722th Research Institute of CSIC,Wuhan 430079,China
  • Received:2017-01-11 Online:2018-03-01 Published:2018-03-01

Abstract: In transient dynamic congestion, there is a strong interaction among the intersection pedestrian. The conventional mechanical evacuation method lacks friction constraint parameters with changeable instantaneous dynamic characteristics, and assumes that there is no contact among the pedestrian. This results in poor evacuation process efficiency, poor stability and poor distribution equilibrium degree. To solve the above problem, a pedestrian transient dynamic congestion evacuation model based on cellular automata is proposed. First, the mechanical constraint parameters of the transient dynamic congestion are obtained. Then, under the constraint of these mechanical parameters, the traffic flow of the longer evacuation path is transferred to the shortest path. Finally, the cellular automata is used solve the transient dynamic optimal state of the user. Simulation results show that, applying the proposed model to multiple evacuation ports and single evacuation ports, the pedestrian congestion evacuation efficiency, pedestrian compliance rate and the equilibrium degree of evacuation distribution are improved.

Key words: engineering of communications and transportation system, intersection, cellular automata, pedestrian congestion, transient dynamics

CLC Number: 

  • U491
[1] Zhang Yao. Study on optimization of uban traffic congestion evacuation route[J]. Computer Simulation, 2017,34(2):200-203.
[2] Takayanagi H, Yamada S, Shibahara H, et al. A study on evaluation method for local congestion in pedestrian space by using of traj-scalar model[J]. Aij Journal of Technology & Design, 2016, 22(52):1067-1071.
[3] Cao S, Song W,Lv W. Modeling pedestrian evacuation with guiders based on a multi-grid model[J]. Physics Letters A, 2016, 380(4):540-547.
[4] 张磊, 岳昊, 李梅,等. 拥堵疏散的行人拥挤力仿真研究[J]. 物理学报, 2015, 64(6):060505.
Zhang Lei, Yue Hao, Li Mei, et al. Simulation of pedestrian push-force in evacuation with congestion[J]. Acta Physica Sinica, 2015,64(6):060505.
[5] 李明华, 袁振洲, 许琰,等. 基于点排队模型的多出口疏散优化模型研究[J]. 交通运输系统工程与信息, 2015, 15(4):166-172.
Li Ming-hua, Yuan Zhen-zhou, Xu Yan, et al. An optimization model of multi-exit evacuation based on point queue model[J]. Journal of Transportation Systems Engineering and Information Technology, 2015,15(4):166-172.
[6] 胥旋, 史聪灵, 伍彬彬,等. 人群分区疏散优化算法研究[J]. 中国安全生产科学技术, 2016, 12(11):153-158.
Xu Xuan, Shi Cong-ling, Wu Bin-bin, et al. Study on the optimization algorithm of the crowd partition evacuation[J]. Journal of Safety Science and Technology, 2016,12(11):153-158.
[7] 周继彪, 陈红, 闫彬,等. 基于云模型的地铁换乘枢纽拥挤度辨识方法[J]. 吉林大学学报:工学版, 2016, 46(1):100-107.
Zhou Ji-biao, Chen Hong, Yan Bin, et al. Identification of pedestrian crowding degree in metro transfer hub based on normal cloud model[J]. Journal of Jilin University(Engineering and Technology Edition), 2016,46(1):100-107.
[8] Djehiche B, Siwe A T, Tembine H. A mean-field game of evacuation in multi-level building[J]. IEEE Transactions on Automatic Control, 2017, 8(99):1-22.
[9] Tan L, Wu L, Lin H. An individual cognitive evacuationbehaviour model for agent-based simulation: a case study of a large outdoor event[J]. International Journal of Geographical Information Science, 2015, 29(9):1552-1568.
[10] Zhang L, Yue H, Li M, et al. Simulation of pedestrian push-force in evacuation with congestion[J].Acta Physica Sinica, 2015, 64(6):10-15.
[11] Zhou M, Dong H, Wen D, et al. Modeling of crowd evacuation with assailants via a fuzzy logic approach[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(9):2395-2407.
[12] Solmaz G, Turgut D. Pedestrian mobility in theme park disasters[J]. IEEE Communications Magazine, 2015, 53(7):172-177.
[13] Carrillo J A, Martin S, Wolfram M T. An improved version of the Hughes model for pedestrian flow[J]. Mathematical Models & Methods in Applied Sciences, 2016, 26(4):671-697.
[14] You L, Hu J,Gu M, et al. The simulation and analysis of small group effect in crowd evacuation[J]. Physics Letters A, 2016, 380(41):3340-3348.
[15] Jiang X. Simulationmodel of pedestrian evacuation in high-rise building: considering group behaviors and real-time fire[J]. International Journal of Smart Home, 2015, 9(2):81-92.
[16] Wang J, Jin Z, Hilton R G, et al. Controls on fluvial evacuation of sediment from earthquake-triggered landslides[J]. Geology, 2015, 43(2):115-118.
[17] Karbovskii V, Voloshin D, Karsakov A, et al. Multiscale agent-based simulation in large city areas: emergency evacuation use case [J]. Procedia Computer Science, 2015, 51(1):2367-2376.
[18] Tsiftsis A, Georgoudas I G, Sirakoulis G C. Real data evaluation of a crowd supervising system for stadium evacuation and its hardware implementation[J]. IEEE Systems Journal, 2016, 10(2):649-660.
[19] Ronchi E, Nilsson D, Koji S, et al. A virtual reality experiment on flashing lights at emergency exit portals for road tunnel evacuation[J]. Fire Technology, 2016, 52(3):623-647.
[20] Ronchi E, Kinateder M, Müller M, et al. Evacuation travel paths in virtual reality experiments for tunnel safety analysis[J]. Fire Safety Journal, 2015, 71(24):257-267.
[1] CHEN Yong-heng,LIU Fang-hong,CAO Ning-bo. Analysis of conflict factors between pedestrians and channelized right turn vehicles at signalized intersections [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1669-1676.
[2] LIU Xiang-yu, YANG Qing-fang, KUI Hai-lin. Traffic guidance cell division based on random walk algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1380-1386.
[3] LIU Zhao-hui, WANG Chao, LYU Wen-hong, GUAN Xin. Identification of data characteristics of vehicle running status parameters by nonlinear dynamic analysis [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1405-1410.
[4] LUAN Xin, DENG Wei, CHENG Lin, CHEN Xin-yuan. Mixed Logit model for understanding travel mode choice behavior of megalopolitan residents [J]. 吉林大学学报(工学版), 2018, 48(4): 1029-1036.
[5] CHEN Yong-heng, LIU Xin-shan, XIONG Shuai, WANG Kun-wei, SHEN Yao, YANG Shao-hui. Variable speed limit control under snow and ice conditions for urban expressway in junction bottleneck area [J]. 吉林大学学报(工学版), 2018, 48(3): 677-687.
[6] WANG Zhan-zhong, LU Yue, LIU Xiao-feng, ZHAO Li-ying. Improved harmony search algorithm on truck scheduling for cross docking system [J]. 吉林大学学报(工学版), 2018, 48(3): 688-693.
[7] CHEN Song, LI Xian-sheng, REN Yuan-yuan. Adaptive signal control method for intersection with hook-turn buses [J]. 吉林大学学报(工学版), 2018, 48(2): 423-429.
[8] XU Hong-feng, GAO Shuang-shuang, ZHENG Qi-ming, ZHANG Kun. Hybrid dynamic lane operation at signalized intersection [J]. 吉林大学学报(工学版), 2018, 48(2): 430-439.
[9] WANG Zhan-zhong, ZHAO Li-ying, JIAO Yu-Ling, CAO Ning-bo. Social force model of pedestrian-bike mixed flow at signalized crosswalk [J]. 吉林大学学报(工学版), 2018, 48(1): 89-97.
[10] HOU Xian-yao, CHEN Xue-wu. Use of public transit information market segmentation based onattitudinal factors [J]. 吉林大学学报(工学版), 2018, 48(1): 98-104.
[11] GAO Kun, TU Hui-zhao, SHI Heng, LI Zhen-fei. Effect of low visibility in haze weather condition on longitudinal driving behavior in different car-following stages [J]. 吉林大学学报(工学版), 2017, 47(6): 1716-1727.
[12] WEI Li-ying, CUI Yu-feng, WEI Jia-rong. Cellular automata model based on local maximum entropy lane-changing rules for electric bicycle flow [J]. 吉林大学学报(工学版), 2017, 47(5): 1436-1445.
[13] YAO Rong-han, ZHANG Xiao-tong, LIAN Lian. Optimization model for controlling reversible approach lanes at signalized intersections [J]. 吉林大学学报(工学版), 2017, 47(4): 1048-1054.
[14] FANG Rui-wei, ZHANG Xie-dong, JIANG Pan. Planning of urban rapid transportation based on SWOT-AHP analysis [J]. 吉林大学学报(工学版), 2017, 47(4): 1055-1060.
[15] LI Ming-da, KUI Hai-lin, MEN Yu-zhuo, BAO Cui-zhu. Aerodynamic drag of heavy duty vehicle with complex underbody structure [J]. 吉林大学学报(工学版), 2017, 47(3): 731-736.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Wen-quan, SHANG Yan-geng, LI Xiu-juan, WANG Chun-sheng, ZHANG Gui-lan. Microstructure and property of laser welded 650 MPa transformation induced plasticity steel sheet[J]. , 2012, 42(05): 1203 -1207 .
[2] HUANG Jian-kang, HE Cui-cui, SHI Yu, FAN Ding. Thermodynamic analysis of Al-Fe intermetallic compounds formed by dissimilar joining of aluminum and galvanized steel[J]. 吉林大学学报(工学版), 2014, 44(4): 1037 -1041 .
[3] XU Tao, LIU Guang-jie, GE Hai-chao, ZHANG Wei, YU Zheng-lei. Modeling heat source of dynamic welding with local coordinate curve path[J]. 吉林大学学报(工学版), 2014, 44(6): 1704 -1709 .
[4] LUO Hai-tao, ZHOU Wei-jia, WANG Hong-guang, WU Jia-feng. Mechanical analysis of friction stir welding robot under typical working conditions[J]. 吉林大学学报(工学版), 2015, 45(3): 884 -891 .
[5] YANG Yue, ZHOU Lei-lei. Effect of micro-arc oxidation treatment on corrosion resistance of aluminum friction stir welding welds[J]. 吉林大学学报(工学版), 2016, 46(2): 511 -515 .
[6] CHU Liang, SUN Cheng-wei, GUO Jian-hua, ZHAO Di, LI Wen-hui. Evaluation method of braking energy recovery based on wheel cylinder pressure[J]. 吉林大学学报(工学版), 2018, 48(2): 349 -354 .
[7] HE Xiang-kun, JI Xue-wu, YANG Kai-ming, WU Jian, LIU Ya-hui. Tire slip control based on integrated-electro-hydraulic braking system[J]. 吉林大学学报(工学版), 2018, 48(2): 364 -372 .
[8] SHI Wen-ku, LIU Guo-zheng, SONG Hai-sheng, CHEN Zhi-yong, ZHANG Bao. Vibration and noise characteristics of electric bus[J]. 吉林大学学报(工学版), 2018, 48(2): 373 -379 .
[9] ZHANG Tian-shi, SONG Dong-jian, GAO Qing, WANG Guo-hua, YAN Zhen-min, SONG Wei. Construction of power battery liquid cooling system for electric vehicle and simulation of its working process[J]. 吉林大学学报(工学版), 2018, 48(2): 387 -397 .
[10] CHEN Ji-qing, DU Tian-ya, LAN Feng-chong. Numerical analysis of human liver biomechanical response to blunt impacts[J]. 吉林大学学报(工学版), 2018, 48(2): 398 -406 .