吉林大学学报(工学版) ›› 2013, Vol. 43 ›› Issue (04): 1091-1097.doi: 10.7964/jdxbgxb201304039

• paper • Previous Articles     Next Articles

Fast convergent algorithm of reconstructing bandpass prolate spheroidal wave function

LIU Chuan-hui1, WANG Hong-xing1,2, ZHANG Lei1, LIU Xi-guo1,2   

  1. 1. Department of Electronic and Information Engineering, Naval Aeronautical and Astronautical University,Yantai 264001,China;
    2. Key Laboratory on Signal & Information Processing of Shandong Province,Naval Aeronautical and Astronautical University, Yantai 264001,China
  • Received:2012-04-20 Online:2013-07-01 Published:2013-07-01

Abstract:

In order to improve the accuracy of reconstructing Bandpass Prolate Spherical Wave Function (BPSWF), a fact convergent reconstruction algorithm is developed. According to the sampling theorem and the fact that bandpass signal can be recovered from its well sampling signal with a suitable bandpass filter, a general construction formula is given. Main factors inducing the errors of the reconstruction algorithm are analyzed, and the basic idea of using more convergent base functions to improve the reconstruction accuracy is proposed. A group of fast convergent base is given by design in frequency domain; then, the fast convergent algorithm of reconstructing BPSWF is proposed. Theoretical analysis and simulation results demonstrate that the new reconstruction algorithm is fit for recovering BPSWF of low frequency. Compared with the reconstruction method with sinc base function, the proposed algorithm can achieve higher reconstruction accuracy, which makes the recovered BPSWF get better orthogonality and energy concentration characteristics.

Key words: communication, reconstruction algorithm, reconstruction base functions improve, bandpass prolate spheroidal wave functions(BPSWF), sampling theorem

CLC Number: 

  • TN911.7

[1] 刘锡国. 基于椭圆球面波函数的非正弦时域正交调制技术研究. 烟台:海军航空工程学院, 2011. Liu Xi-guo. Nonsinusoidal orthogonal modulation technology in time domain based on PSWF. Yantai:Naval Aeronatutical and Astronautical University, 2011.

[2] Slepian D, Pollak H O. Prolate spheroidal wave functions, Fourier analysis, and uncertainty-I[J]. The Bell System Technical Journal, 1961, 40(1): 43-46.

[3] Slepian D. Prolate spheroidal wave functions, Fourier analysis, and uncertainty-V: the discrete case. The Bell System Technical Journal,1978: 1371-1430.

[4] Abderrazek K, Tahar M. New efficient methods of computing the prolate spheroidal wave functions and their corresponding eigenvalues[J]. Applied and Computational Harmonic Analysis,2008(24): 269-289.

[5] Gilbert G W, Shen X P. Wavelets based on prolate spheroidal wave functions[J]. The Journal of Fourier Analysis and Applications, 2004(10): 1-26.

[6] Wei Li-ying, Kennedy Rodney A, Lamahewa Tharaka A. An optimal basis of band-limited functions for signal analysis and design[J]. IEEE Transactions on Signal Processing, 2011,58(11):5744- 5755.

[7] Lindquist Martin A, Zhang Cun-hui, Glover Gary,et al. A generalization of the two-dimensional prolate spheroidal wave function method for nonrectilinear MRI data acquisition methods[J]. IEEE Transactions on Image Processing, 2006,15(9): 2792-2804.

[8] Zhao Hui, Ran Qi-wen, Ma Jing, et al. Generalized prolate spheroidal wave functions associated with linear canonical transform[J]. IEEE Transactions on Signal Processing, 2010, 58(6):3032-3041.

[9] Pei Soo-chang, Ding Jian-jun. Generalized prolate spheroidal wave functions for optical finite fractional Fourier and linear canonical transforms[J]. J Opt Soc Am A, 2005, 22(3):460-474.

[10] Cirpan Bahattin Karakaya Hakan A, Arslan Hüseyin, Can Azime. Slepian based channel interpolation for LTE uplink system with high mobility//IEEE Globecom Workshop on Broadband Single Carrier and Frequency Domain Communications, 2010:1307-1311.

[11] Tugnait Jitendra K, He Shuang-chi. Multiuser/MIMO doubly selective fading channel estimation using superimposed training and Slepian sequences[J]. IEEE Transactions on Vehicular Technology, 2010, 59(3): 1341-1351.

[12] Tran Le Chung, Mertins A. Space-time-frequency code implementation in MB-OFDM UWB communications: design criteria and performance[J]. IEEE Trans on Wireless Comm, 2009, 8(2): 701-713.

[13] Claudio Sacchi, Tommaso Rossi, Marina Ruggieri, et al. Efficient waveform design for high-bit-rate W-band satellite transmissions[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011,47(2): 974-995.

[14] 王红星, 赵志勇, 刘锡国,等. 非正弦时域正交调制方法. 中国,ZL 200810159238.3, 2009.

[15] 赵志勇, 王红星, 刘锡国,等. 基于PSWF的非正弦时域正交调制信号的同步方法[J]. 电子与信息学报, 2010, 32(11): 2588-2592. Zhao Zhi-yong, Wang Hong-xing, Liu Xi-guo, et al. Synchronization method based on auxiliary sequence for nonsinusoidal orthogonal modulation signal in time domain[J]. Journal of Electronics & Information Technology, 2010, 32(11): 2588-2592.

[16] 王红星, 刘锡国, 赵志勇, 等. 基于三值编码的非正弦时域正交调制方法[J]. 电子与信息学报, 2011, 33(8): 2003-2007. Wang Hong-xing, Liu Xi-guo, Zhao Zhi-yong, et al. A method of nonsinusoidal orthogonal modulation in time domain based on ternary coding[J]. Journal of Electronics & Information Technology, 2011, 33(8): 2003-2007.

[17] Hong Xiao, Rokhlin V, Yarvin N. Prolate spheroidal wave functions, quadrature and interpolation[J]. Inverse Problems, 2001,17: 805-838.

[18] Halpern P H. Optimum finite duration Nyquist signals[J]. IEEE Transactions on Communications, 1979(27): 884-888.

[19] Kedar K, Nicholas G. Sampling theory approach to prolate spheroidal wavefunctions[J]. Journal of Physics,2003, 36: 10011-10021.

[20] Kedar K. Bandpass sampling and bandpass analogues of prolate spheroidal functions[J]. Signal Processing, 2006(86): 1550-1558.

[21] 王红星, 刘锡国, 赵志勇,等. 椭圆球面波函数的快速重构算法[J]. 电波科学学报, 2011, 26(4): 765-770. Wang Hong-xing, Liu Xi-guo, Zhao Zhi-yong, et al. Fast method of reconstructing prolate spheroidal wave function[J]. Chinese Journal of Radio Science, 2011, 26(4): 765-770.

[22] Parr B, Cho B, Wallace K. A novel ultra-wideband pulse design algorithm[J]. IEEE Communication Letters, 2003, 7(5): 219-221.

[23] Kedar K, Nicholas G. Direct sampling and demodulation of carrier-frequency signals[J]. Optics Communications, 2002, 211: 85-94.

[1] CHEN Yong-heng,LIU Fang-hong,CAO Ning-bo. Analysis of conflict factors between pedestrians and channelized right turn vehicles at signalized intersections [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1669-1676.
[2] CHANG Shan,SONG Rui,HE Shi-wei,LI Hao-dong,YIN Wei-chuan. Recycling model of faulty bike sharing [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1677-1684.
[3] QU Da-yi,YANG Jing-ru,BING Qi-chun,WANG Wu-lin,ZHOU Jing-chun. Arterial traffic offset optimization based on queue characteristics at adjacent intersections [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1685-1693.
[4] ZHOU Yan-guo,ZHANG Hai-lin,CHEN Rui-rui,ZHOU Tao. Two-level game approach based resource allocation scheme in cooperative networks [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1879-1886.
[5] LIU Xiang-yu, YANG Qing-fang, KUI Hai-lin. Traffic guidance cell division based on random walk algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1380-1386.
[6] LIU Zhao-hui, WANG Chao, LYU Wen-hong, GUAN Xin. Identification of data characteristics of vehicle running status parameters by nonlinear dynamic analysis [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1405-1410.
[7] LUAN Xin, DENG Wei, CHENG Lin, CHEN Xin-yuan. Mixed Logit model for understanding travel mode choice behavior of megalopolitan residents [J]. 吉林大学学报(工学版), 2018, 48(4): 1029-1036.
[8] SUN Xiao-ying, HU Ze-zheng, YANG Jin-peng. Assessment method of electromagnetic pulse sensitivity of vehicle engine system based on hierarchical Bayesian networks [J]. 吉林大学学报(工学版), 2018, 48(4): 1254-1264.
[9] DONG Ying, CUI Meng-yao, WU Hao, WANG Yu-hou. Clustering wireless rechargeable sensor networks charging schedule based on energy prediction [J]. 吉林大学学报(工学版), 2018, 48(4): 1265-1273.
[10] MOU Zong-lei, SONG Ping, ZHAI Ya-yu, CHEN Xiao-xiao. High accuracy measurement method for synchronous triggering pulse transmission delay in distributed test system [J]. 吉林大学学报(工学版), 2018, 48(4): 1274-1281.
[11] DING Ning, CHANG Yu-chun, ZHAO Jian-bo, WANG Chao, YANG Xiao-tian. High-speed CMOS image sensor data acquisition system based on USB 3.0 [J]. 吉林大学学报(工学版), 2018, 48(4): 1298-1304.
[12] CHEN Yong-heng, LIU Xin-shan, XIONG Shuai, WANG Kun-wei, SHEN Yao, YANG Shao-hui. Variable speed limit control under snow and ice conditions for urban expressway in junction bottleneck area [J]. 吉林大学学报(工学版), 2018, 48(3): 677-687.
[13] WANG Zhan-zhong, LU Yue, LIU Xiao-feng, ZHAO Li-ying. Improved harmony search algorithm on truck scheduling for cross docking system [J]. 吉林大学学报(工学版), 2018, 48(3): 688-693.
[14] LI Zhi-hui, HU Yong-li, ZHAO Yong-hua, MA Jia-lei, LI Hai-tao, ZHONG Tao, YANG Shao-hui. Locating moving pedestrian from running vehicle [J]. 吉林大学学报(工学版), 2018, 48(3): 694-703.
[15] CHEN Song, LI Xian-sheng, REN Yuan-yuan. Adaptive signal control method for intersection with hook-turn buses [J]. 吉林大学学报(工学版), 2018, 48(2): 423-429.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!