吉林大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (6): 1848-1853.doi: 10.13229/j.cnki.jdxbgxb201706024

• Orginal Article • Previous Articles     Next Articles

Analysis of fatigue life factors of aluminum alloy welded joints based on neighborhood rough set theory

WANG Chun-sheng1, 2, ZOU Li3, YANG Xin-hua2   

  1. 1.Engineering and Technology Center,CRRC Changchun Railway Vehicles Co., Ltd., Changchun 130062,China;
    2.School of Materials Science and Engineering,Dalian Jiaotong University,Dalian 116028,China;
    3.Software Institute,Dalian Jiaotong University,Dalian 116028,China
  • Received:2016-11-20 Online:2017-11-20 Published:2017-11-20

Abstract: To sole the problem that classical rough set theory can only deal with continuous data, neighborhood rough set theory is employed to analyze the factors that influence the fatigue life of the welded joints. A unified neighborhood rough set model is proposed, which can handle both symbolic and numeric attributes. Attribute reduction algorithm combining forward greedy algorithm and backward pruning algorithm is used to obtain the key factors and to quantitatively calculate the weights of the factors influencing the fatigue life of the welded joints. Experiment results of aluminum alloy welded joints show that the proposed neighborhood rough set model can choose a small number of features and obtain an objective evaluation of various influence factors from the sample data of the aluminum alloy welded joints without any priori knowledge.

Key words: material synthesis and processing technology, neighborhood rough set, welded joints, fatigue life

CLC Number: 

  • TG409
[1] Iqbal M, Shaikht M A, Ahmad M, et al. Ageing effect on hardness and microstructure of Al-Zn-Mg alloys[J]. Journal of Materials Science and Technology,2000,16(3):319-322.
[2] Shimizu K, Torii T, Ma Y L. Crack opening sliding morphology and stress intensity factor of slant fatigue crack[J]. Key Engineering Materials,2005,297-300:697-702.
[3] 孟广伟,李锋,赵云亮. 基于随机有限元法的疲劳断裂可靠性分析[J]. 吉林大学学报:工学版,2006,36(增刊1):16-19.
Meng Guang-wei, Li Feng, Zhao Yun-liang. Reliability analysis of fatigue and fracture based on stochastic finite element method[J]. Journal of Jilin University(Engineering and Technology Edition),2006,36(Sup.1):16-19.
[4] 闫楚良,郝云霄,刘克格. 基于遗传算法优化的BP神经网络的材料疲劳寿命预测[J]. 吉林大学学报:工学版,2014,44(6):1710-1715.
Yan Chu-liang,Hao Yun-Xiao,Liu Ke-ge. Fatigue life prediction of materials based on BP neural networks optimized by genetic algorithm[J]. Journal of Jilin University (Engineering and Technology Edition),2014,44(6):1710-1715.
[5] 邹丽,杨鑫华,孙屹博,等. 基于变精度粗糙集的铝合金焊接接头疲劳寿命预[J]. 焊接学报,2013,34(4):65-68.
Zou Li, Yang Xin-hua, Sun Yi-bo, et al. Fatigue life prediction of aluminum alloy welded joint based on variable precision rough set[J]. Transactions of the China Welding Institution, 2014,34(4):65-68.
[6] Yang Xin-hua, Zou Li, Deng Wu. Fatigue life prediction for welding components based on hybrid intelligent technique[J]. Material Science and Engineering A,2015,642:235-261.
[7] Pawlak Z.Rough sets[J]. International Journal of Computer and Information Sciences,1982,11(5):341-356.
[8] 王国胤,姚一豫,于洪. 粗糙集理论与应用研究综述[J]. 计算机学报,2009,32(7):1229-1246.
Wang Guo-yin, Yao Yi-yu, Yu Hong. A survey on rough set theory and applications[J]. Chinese Journal of Computers,2009,32(7):1229-1246.
[9] 王国胤,张清华,马希骜,等. 知识不确定性问题的粒计算模型[J]. 软件学报,2011,22(4):676-694.
Wang Guo-yin, Zhang Qing-hua, Ma Xi-ao, et al. Granular computing models for knowledge uncertainty[J]. Journal of Software,2011,22(4):676-694.
[10] He Q, Wu C X, Chen D G, et al. Fuzzy rough set based attribute reduction for information system with fuzzy decisions[J]. Knowledge-Based Systems,2011,24(5):689-696.
[11] Parthaláin N M, Shen Q. Exploring the boundary region of tolerance rough sets for feature selection[J]. Pattern Recognition,2009,42(5):655-667.
[12] Li Wei-wei, Huang Zhi-qiu, Jia Xiu-yi, et al. Neighborhood based decision-theoretic rough set models[J]. International Journal of Approximate Reasoning,2016,69:1-17.
[13] 赵佰亭,陈希军,曾庆双. 不完备模糊混合决策系统的邻域粗糙集分析方法[J]. 吉林大学学报:工学版,2011,41(3):721-727.
Zhao Bai-ting, Chen Xi-jun, Zeng Qing-shuang. Approach for incomplete fuzzy hybrid decision system on neighborhood rough set[J]. Journal of Jilin University(Engineering and Technology Edition),2011,41(3):721-727.
[14] Sidhom N, Larrmouri A, Fathallah R, et al. Fatigue strength improvement of 5083H11 Al-alloy T-welded joints by shot peening: experimental characterization and predictive approach[J]. International Journal of Fatigue,2005,27(7):729-745.
[15] Sidhom N, Braham C, Lieurade H P. Fatigue life evaluation of shot peened Al-alloy 5083H11 T-welded joints by experimental and numerical approaches[J]. Welding in the World,2007,51(1):50-57.
[16] Beretta S, Sala G. A model for fatigue strength of welded lap joints[J]. Fatigue & Fracture Engineering Materials & Structures,2005,28(1/2):257-264.
[17] da Cruz J A M P, Costaa J D M, Borrego L F P, et al. Fatigue life prediction in AlMgSi1 lap joint weldments[J]. International Journal of Fatigue,2000,22(7):601-610.
[1] MAO Yu-ze, WANG Li-qin. Influence of squirrel-cage flexible support on the dynamic performance of ball bearing [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1508-1514.
[2] WANG Hui, ZHOU Jie, XIONG Yu, TAO Ya-ping, XIANG Rong. Springback compensation for stamping part with complex surface based on reverse engineering [J]. 吉林大学学报(工学版), 2017, 47(6): 1842-1847.
[3] LUN Feng-yan, FU Wen-zhi, LI Ming-zhe, YI Zhuo, WANG Xin-tong, CHEN Xue. Forming of flexible rolling of three-dimensional surface based on bended rolls [J]. 吉林大学学报(工学版), 2017, 47(3): 876-883.
[4] HU Kan, YU Ye, YING Liang, HU Ping, HOU Wen-bin. Optimization design of hot-stamping beam structure considering rollover crash safety of school bus [J]. 吉林大学学报(工学版), 2017, 47(3): 884-890.
[5] CAO Shan-shan, LEI Jun-qing. Fatigue life prediction of steel structure considering interval uncertainty [J]. 吉林大学学报(工学版), 2016, 46(3): 804-810.
[6] JIANG Rong-chao, WANG Deng-feng, QIN Min, JIANG Yong-feng. Lightweight design of twist beam of rear suspension of passenger car based on fatigue life [J]. 吉林大学学报(工学版), 2016, 46(1): 35-42.
[7] XING Bao-ying, HE Xiao-cong, WANG Yu-qi, DENG Cheng-jiang. Mechanism of mechanical properties of self-piercing riveted joints with multiple rivets [J]. 吉林大学学报(工学版), 2015, 45(5): 1488-1494.
[8] DENG Cheng-jiang, HE Xiao-cong, XING Bao-ying, WANG Yu-qi, ZENG Kai, DING Yan-fang. Mechanical properties of self-piercing riveted lap joints in dissimilar metal sheets of aluminum and copper [J]. 吉林大学学报(工学版), 2015, 45(2): 473-480.
[9] YAN Chu-liang, HAO Yun-xiao, LIU Ke-ge. Fatigue life prediction of materials based on BP neural networks optimized by genetic algorithm [J]. 吉林大学学报(工学版), 2014, 44(6): 1710-1715.
[10] HU Zhi-qing,ZHEN Jiao-jiao,FENG Zeng-ming,ZHOU Shu-hong. Flexible rolling and stretch forming surface technology and numerical simulation [J]. 吉林大学学报(工学版), 2014, 44(3): 701-707.
[11] WANG Mi, CAI Zhong-yi, LI Ming-zhe, WANG Da-ming. Calculation of bending deformation of flexible roll forming for three-dimensional surface parts and numerical simulation [J]. 吉林大学学报(工学版), 2014, 44(2): 404-408.
[12] LI Ren-jun, LI Ming-zhe, XUE Peng-fei, CAI Zhong-yi, QIU Ning-jia. Method of flexible rolling for surface sheet metal [J]. 吉林大学学报(工学版), 2013, 43(06): 1529-1535.
[13] CAO Jun-hui, FU Wen-zhi, LI Ming-zhe, PENG He-li. Influence factors on dimpling in multi-point thermoforming for polymer sheet [J]. 吉林大学学报(工学版), 2013, 43(06): 1536-1540.
[14] SUI Zhou, CAI Zhong-yi, LAN Ying-wu, LI Ming-zhe. Shape control model for three-dimensional surface part in continuous flexible forming process [J]. 吉林大学学报(工学版), 2013, 43(05): 1302-1306.
[15] CHEN Wei, NA Jing-xin. One step forming positive method based on deformation theory [J]. 吉林大学学报(工学版), 2013, 43(02): 358-362.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!