Journal of Jilin University(Engineering and Technology Edition) ›› 2019, Vol. 49 ›› Issue (4): 1174-1185.doi: 10.13229/j.cnki.jdxbgxb20171041

Previous Articles    

Cylinder pressure identification based on EKF and frequency⁃amplitude modulation Fourier series

De⁃jun WANG1,2(),Zhi⁃chao LYU1,2,Qi⁃ming WANG3,Jian⁃rui ZHANG4,Jian⁃nan DING2   

  1. 1. State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, China
    2. College of Communication Engineering, Jilin University, Changchun 130022, China
    3. College of Transportation, Jilin University, Changchun 130022, China
    4. R&D Center, China FAW Co. , Ltd. ,Changchun 130022, China
  • Received:2017-11-01 Online:2019-07-01 Published:2019-07-16

Abstract:

To achieve a low?cost, real?time, non?invasive, high?accuracy soft cylinder pressure sensor, we propose a novel pressure identification method involving frequency?amplitude modulated Fourier series and an extended?Kalman?filter?optimized engine model, which is based on theories regarding explosion and burning together with Newton′s laws. The extended?Kalman?filter is used to estimate the optimal output of this iteration model. The optimal output of the speed iteration model is utilized to separately compute the frequency and amplitude of the cylinder pressure cycle?by?cycle. A standard engine working cycle, identified by the 24th order Fourier series, is determined. Using the frequency and the amplitude to modulate the Fourier series yields a complete pressure model. A commercial engine (EA211) provided by the China FAW Group corporate R&D center is used to verify the method. Test results show that this novel method possesses high accuracy and real?time capability, with an error percentage for speed below 10% and the percentage corresponding to power of pressure below 2% when Air?Fuel Ratio coefficient is setup at 0.85. Error percentage for speed below 1.5% and the percentage corresponding to power of pressure below 1.5% when Air?Fuel Ratio coefficient is setup at 0.95.Thus, the accuracy and feasibility of the proposed method are verified.

Key words: power machinery and engineering, engine cylinder pressure, extended Kalman filter(EKF), frequency modulation, amplitude modulation, speed iteration model

CLC Number: 

  • TK41

Fig.1

Flow chart of proposed method"

Fig.2

Schematic diagram of effective throttle valve"

Fig.3

Flow chart of engine energy transfer"

Fig.4

Relationship of speed in iteration model"

Fig.5

Schematic diagram of working cycle"

Fig.6

VW EA211 engine"

Fig.7

"

Fig.8

Speed tracking(λ=0.85)"

Fig.9

Error percentage of speed tracking(λ=0.85)"

Table 1

Parameters of the 24th order Fourier series(a)"

a0-a4 a5-a9 a10-a14 a15-a19 a20-a24
12.06 -1.215 -1.854 0.7365 -0.00471
-11.92 3.652 0.2843 -0.9149 0.3783
-3.768 -2.639 1.142 0.1323 -0.3231
9.395 0.1302 -1.264 0.5965 -0.00949
-4.813 1.882 0.324 -0.5427 0.257

Table 1

Parameters of the 24th order Fourier series(b)"

b1-b5 b6-b10 b11-b15 b16-b20 b21-b24
13.11 1.267 -1.775 0.291 0.2242
-11.71 1.927 0.9967 -0.8235 0.202
1.303 -2.787 0.3929 0.4077 -0.3184
5.68 1.365 -1.146 0.2995 0.1462
-5.136 0.8418 0.7361 -0.5088 -

Fig.10

Pressure identification(λ=0.85)"

Fig.11

Power of cylinder pressure(λ=0.85)"

Fig.12

Error percentage of power of cylinder pressure(λ=0.85)"

Fig.13

"

Fig.14

Speed tracking(λ=0.95)"

Fig.15

Error percentage of speed tracking(λ=0.95)"

Fig.16

Pressure identification(λ=0.95)"

Fig.17

Power of cylinder pressure(λ=0.95)"

Fig.18

Error percentage of power of cylinder pressure(λ=0.95)"

1 Ducek K P , Michael S . A control⁃oriented internal model for cylinder pressure in combustion engines[J]. IEEE Transactions on Automatic Control, 1989, 34(4):386⁃397.
2 Rizzoni G . A stochastic model for the indicated pressure process and the dynamics of the internal combustion engine[J]. IEEE Transactions on Vehicular Technology, 1989, 38(3):180⁃192.
3 Min K , Chung J , Sunwoo M . Torque balance control for light⁃duty diesel engines using an individual cylinder IMEP estimation model with a single cylinder pressure sensor[J]. Applied Thermal Engineering, 2016,109(Part A): 440⁃448.
4 Bennett C , Dunne J F , Trimby S , et al . Engine cylinder pressure reconstruction using crank kinematics and recurrently⁃trained neural networks[J]. Mechanical Systems and Signal Processing,2017(85):126⁃145.
5 Bodisco T , Brown R J . Inter⁃cycle variability of in⁃cylinder pressure parameters in an ethanol fumigated common rail diesel engine[J]. Energy, 2013, 52: 55⁃65.
6 Muddassar A R , Aamer I B , Qarab R B . Hybrid model of the gasoline engine for misfire detection[J]. IEEE Transactions on Industrial Electronics, 2011, 58(8):3680⁃3692.
7 Al⁃Durra A , Canova M , Yurkovich S . A real⁃time pressure estimation algorithm for closed⁃loop combustion control[J]. Mechanical Systems and Signal Processing, 2013(38):411–427.
8 Naik S . Advanced misfire detection using adaptive signal processing[J]. International Journal of Adaptive Control and Signal Processing, 2004, 18(2):181⁃198.
9 Shiao Y J , Moskwa J J . Cylinder pressure and combustion heat release estimation for SI engine diagnostics using nonlinear sliding observers[J]. IEEE Transactions on Control Systems Technology, 1995,3(1):70⁃78.
10 濮立俊,杨建国,王志华,等 . 利用发动机瞬时转速波动诊断气门漏气故障[J]. 武汉交通科技大学学报,2000,24(1):59⁃63.
Pu Li⁃jun , Yang Jian⁃guo , Wang Zhi⁃hua , et al . Diagnosing leakage of valves in engines by analyzing instantaneous speed fluctuations[J]. Journal of Wuhan Transportation University,2000,24(1):59⁃63.
11 任卫军,贺昱曜,张卫钢 . 基于曲轴段加速度的内燃机失火故障在线诊断[J]. 汽车工程, 2010, 32(4): 339⁃342.
Ren Wei⁃jun , He Yi⁃yao , Zhang Wei⁃gang . On⁃line diagnosis on misfire fault of internal combustion engine based on crankshaft segment acceleration[J]. Automotive Engineering,2010,32(4):339⁃342.
12 栾军英,王虹,田昊,等 . 利用瞬时转速诊断站系统中原动机的失火故障[J]. 机械强度,2006(增刊1):56⁃59.
Luan Jun⁃ying , Wang Hong , Tian Hao ,et al . Application of transient rotational speed on diagnosing motor misfire of power station[J]. Journal of Mechanical Strength, 2006(Sup.1):56⁃59.
13 胡重庆,李艾华,朱春红,等 . 基于瞬时转速统计分析的内燃机失火检测[J]. 内燃机学报,2009, 27(5):446⁃451.
Hu Chong⁃qing , Li Ai⁃hua , Zhu Chun⁃hong ,et al . Misfire detection based on statistical analysis of instantaneous rational speed[J]. Transactions of CSICE, 2009, 27(5):446⁃451.
14 Taglialatela F , Lavorgna M , Mancaruso E , et al . Determination of combustion parameters using engine crankshaft speed[J]. Mechanical Systems and Signal Processing, 2013,38(2):628⁃633.
15 Seuling S , Hamedovic H , Fischer W , et al . Model based engine speed evaluation for single⁃cylinder engine control[C]∥SAE Paper,2012⁃32⁃0044.
16 Al⁃Durra A , Canova M , Yurkovich S . Application of extended kalman filter to on⁃line diesel engine cylinder pressure estimation[C]∥Proceedings of the ASME Dynamic Systems and Control Conference, Hollywood, California, USA, 2009.
17 沈刚 . 并联冗余驱动电液振动台控制系统[M].北京:科学出版社,2016:35⁃60.
18 蔡凤英 . 化工安全工程[M]. 2版.北京:科学出版社,2009:33⁃50.
19 林学东 . 发动机原理[M].北京:机械工业出版社,2015:55⁃88.
20 哈尔滨工业大学理论力学研究室 .理论力学[M]. 7版.北京:高等教育出版社,2009:288⁃322.
21 Metghalchi M , Keck J C . Burning velocities of mixtures of air with methanol,isooctane,and indolene at high pressure and temperature[J]. Combustion and Flame, 1982,48:191⁃210.
22 Zhao Jun⁃bo , Marcos Netto , Lamine Mili . A robust iterated extended Kalman filter for power system dynamic state estimation[J]. IEEE Transactions on Power Systems, 2017, 32(4): 3205⁃3216.
23 Zhang Tie⁃min , Liao Yi⁃hua . Attitude measure system based on extended Kalman filter for multi⁃rotors [J]. Computers and Electronics in Agriculture, 2017(134):19⁃26.
24 全兴信 . 内燃机学[M]. 北京.机械工业出版社,2016:30⁃99.
25 沈维道 . 工程热力学[M]. 北京. 高等教育出版社,2000:29⁃46.
26 Yang Y , Peng Z K , Dong X J . General parameterized time⁃frequency transform[J]. IEEE Transactions on Signal Processing,2014, 62(11):2751⁃2764.
27 Oppenheim A V , Willsky A S , S Hamid Nawab . Signals & Systems[M]. 2nd ed. Upper Saddle River: Prentice Hall, 2005: 235⁃255.
28 Zhou Ke⁃min . Essentials of Robust Control[M]. Upper Saddle River:Prentice Hall, 1999:20⁃50.
[1] Peng⁃fei ZANG,Zhe WANG,Yang GAO,Chen⁃le SUN. Investigation of integrated control strategy for stable operation of linear generator/engine system [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 798-804.
[2] JIANG Tao,LIN Xue-dong,LI De-gang,YANG Miao,TANG Xue-lin. Effect of control parameters on heat release rate with ANN method [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1747-1754.
[3] LIN Xue-dong, JIANG Tao, XU Tao, LI De-gang, GUO Liang. Control strategy of high pressure pump in starting condition of high pressure common rail diesel engine [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1436-1443.
[4] LI Zhi-jun, WANG Hao, HE Li, CAO Li-juan, ZHANG Yu-chi, ZHAO Xin-shun. Soot distribution features and its influence factors in catalytic diesel particulate filte [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1466-1474.
[5] QIN Jing, XU He, PEI Yi-qiang, ZUO Zi-nong, LU Li-li. Influence of initial temperature and initial pressure on premixed laminar burning characteristics of methane-dissociated methanol flames [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1475-1482.
[6] ZHONG Bing, HONG Wei, JIN Zhao-hui, SU Yan, XIE Fang-xi, ZHANG Fu-wei. Movement characteristics of hydraulic variable valve train with early intake valve closing [J]. 吉林大学学报(工学版), 2018, 48(3): 727-734.
[7] LI Long, ZHANG You-tong, ZUO Zheng-xing. Application of variable-load control in cylinder pressure control of free-piston engine generator [J]. 吉林大学学报(工学版), 2018, 48(2): 473-479.
[8] WEI Hai-qiao, PEI Zi-gang, FENG Deng-quan, PAN Jia-ying, PAN Ming-zhang. Effect of multi-injectionpiezo injector on particulate emission in gasoline direct injection engine [J]. 吉林大学学报(工学版), 2018, 48(1): 166-173.
[9] TIAN Jing, LIU Zhong-chang, LIU Jin-shan, DONG Chun-xiao, ZHONG Ming, DU Wen-chang. Performance optimization of diesel engine based on response surface methodology of multi-boundary combustion conditions [J]. 吉林大学学报(工学版), 2018, 48(1): 159-165.
[10] LI Zhi-jun, HE Li, JIANG Rui, SHEN Bo-xi, KONG Xiang-jin, LIU Shi-yu. Evaluation of influence of ash distribution on diesel particulate filter pressure drop [J]. 吉林大学学报(工学版), 2017, 47(6): 1760-1766.
[11] YU Liu, LIU Zhong-chang, LIU Jiang-wei, DU Hong-fei, XU Yun. Gasoline direct injection engine spray droplet characteristics [J]. 吉林大学学报(工学版), 2017, 47(5): 1482-1488.
[12] LIU Zhong-chang, TENG Peng-kun, TIAN Jing, XU Yun, QI Sheng-lin, YU Kai-bo. Regulation characteristics of bypass valve of two stage turbocharged diesel engine [J]. 吉林大学学报(工学版), 2017, 47(3): 796-803.
[13] WANG De-jun, LYU Zhi-chao, WANG Qi-ming, ZHANG Xian-da, WANG Zi-jian. Engine misfire fault diagnosis based on cylinder pressure identification [J]. 吉林大学学报(工学版), 2017, 47(3): 917-923.
[14] SUN Wen-xu, HONG Wei, XIE Fang-xi, SU Yan, JIANG Bei-ping, LI Xiang-yu. Effects of idle speed and throttle opening on engine shutdown characteristics and realization of direct start mode [J]. 吉林大学学报(工学版), 2017, 47(2): 483-489.
[15] LI Zhi-jun, WANG Nan, ZHANG Li-qiang, HUANG Qun-jin, WEI Suo-ku, ZHANG Yan-ke. Numerical simulation for flow and pressure drop characteristics in asymmetrical channels of diesel particulate filter [J]. 吉林大学学报(工学版), 2016, 46(6): 1892-1899.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!