Journal of Jilin University(Engineering and Technology Edition) ›› 2020, Vol. 50 ›› Issue (2): 711-718.doi: 10.13229/j.cnki.jdxbgxb20181143

Previous Articles    

Method of vehicle formation control based on vehicle to vehicle communication

Yan MA1,2(),Jian-fei HUANG1,Hai-yan ZHAO1,2()   

  1. 1.College of Communication Engineering,Jilin University,Changchun 130022,China
    2.Key Laboratory of Automotive Simulation and Control,Jilin University,Changchun 130022,China
  • Received:2018-11-16 Online:2020-03-01 Published:2020-03-08
  • Contact: Hai-yan ZHAO E-mail:mayan_maria@163.com;zhao_hy@jlu.edu.cn

Abstract:

Traditional leader-follower formation controller can hardly obtain the data of the leader vehicle accurately and its parameters may be uncertain due to the influence of external interference. To solving this problem, this paper designed an adaptive feedback linear controller based on variable estimation and proposed an improved method based on Vehicle to Vehicle communication (V2V). Firstly, the accuracy of relative distance is improved by variable estimation. Then, the information accuracy of leader vehicle is guaranteed by using V2V technology. In order to verify the effectiveness of the algorithm, a co-simulation experiment is made using VS2010 and Simulink. The results show that the formation method based on V2V and adaptive control principle can effectively complete the formation task with small errors and convergence. This method provides certain application value for the development of intelligent connected vehicles.

Key words: control theory and control engineering, leader-follower, formation control, vehicle to vehicle communication, adaptive control

CLC Number: 

  • TP273

Fig.1

Bicycle model"

Fig.2

Leader-follower model"

Fig.3

Control block diagram of adaptive controller"

Fig.4

V2V system interface"

Fig.5

Simulation results without interference"

Table 1

Comparison of experimental results"

误差类型线性反馈控制自适应控制V2V控制
调整时间/s稳态值/m(rad)调整时间/s稳态值/m(rad)调整时间/s稳态值/m(rad)
纵向位置11.80.0011.60.0011.00.23
横向位置19.00.0118.20.0118.00.01
航向角13.80.0013.20.0013.20.00

Fig.6

Simulation results comparison with interference"

1 任开明, 李纪舟, 刘玲艳, 等. 车联网通信技术发展现状及趋势研究[J]. 通信技术, 2015, 48(5): 507-513.
Ren Kai-ming, Li Ji-zhou, Liu Ling-yan, et al. Development status and tendency of IoV communication technology[J]. Communication Technology, 2015, 48(5): 507-513.
2 刘宗巍, 匡旭, 赵福全. 中国车联网产业发展现状、瓶颈及应对策略[J]. 科技管理研究, 2016, 36(4): 121-127.
Liu Zong-wei, Kuang Xu, Zhao Fu-quan. The current situation, problems and countermeasures in Chinese internet of vehicles industrialization development[J]. Science and Technology Management Research, 2016, 36(4): 121-127.
3 Zhang F, Xi J, Langari R. Real-time energy management strategy based on velocity forecasts using V2V and V2I communications[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(2): 416-430.
4 Du L, Dao H. Information dissemination delay in vehicle-to-vehicle communication networks in a traffic stream[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(1): 66-80.
5 Mo C, Li Y, Ling Z. Simulation and analysis on overtaking safety assistance system based on vehicle-to-vehicle communication[J]. Automotive Innovation, 2018, 1(2): 158-166.
6 Nascimento T P, Conceição A G S, Moreira A P. Multi-robot nonlinear model predictive formation control: the obstacle avoidance problem[J]. Robotica, 2016, 34(3): 549-567.
7 Xiao H, Li Z, Chen C L P. Formation control of leader-follower mobile robots’ systems using model predictive control based on neural-dynamic optimization[J]. IEEE Transactions on Industrial Electronics, 2016, 63(9): 5752-5762.
8 庄迁政. 多智能小车编队控制及3D实时仿真[D].哈尔滨: 哈尔滨工业大学航天学院, 2014.
Zhuang Qian-zheng. Formation control of multi-small vehicles and 3D realtime simulation[D]. Harbin: School of Astronautics, Harbin Institute of Technology, 2014.
9 Yang S, Cao Y, Peng Z, et al. Distributed formation control of nonholonomic autonomous vehicle via RBF neural network[J]. Mechanical Systems & Signal Processing, 2017, 87: 81-95.
10 Kachroo P, Agarwal S, Piccoli B, et al. Multi-scale modeling and control architecture for V2X enabled traffic streams[J]. IEEE Transactions on Vehicular Technology, 2017, 66(6): 4616-4626.
11 Chen S, Hu J, Yan S, et al. LTE-V: A TD-LTE-based V2X solution for future vehicular network[J]. IEEE Internet of Things Journal, 2017, 3(6): 997-1005.
12 Loria A, Dasdemir J, Jarquin N A. Leader-follower formation and tracking control of mobile robots along straight paths[J]. IEEE Transactions on Control Systems Technology, 2016, 24(2): 727-732.
[1] GU Wan-li,WANG Ping,HU Yun-feng,CAI Shuo,CHEN Hong. Nonlinear controller design of wheeled mobile robot with H performance [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1811-1819.
[2] LI Zhi-hui, XIA Ying-ji, QU Zhao-wei, REN Jing-chen. Data-driven background model in video surveillance [J]. 吉林大学学报(工学版), 2017, 47(4): 1286-1294.
[3] SHAO Ke-yong, CHEN Feng, WANG Ting-ting, WANG Ji-chi, ZHOU Li-peng. Full state based adaptive control of fractional order chaotic system without equilibrium point [J]. 吉林大学学报(工学版), 2017, 47(4): 1225-1230.
[4] DENG Li-fei, SHI Yao-wu, ZHU Lan-xiang, YU Ding-li. Failure detection of closed-loop systems and application to SI engines [J]. 吉林大学学报(工学版), 2017, 47(2): 577-582.
[5] LI Bing-qiang, CHEN Xiao-lei, LIN Hui, LYU Shuai-shuai, MA Dong-qi. High precision adaptive backstepping sliding mode control for electromechanical servo system [J]. 吉林大学学报(工学版), 2016, 46(6): 2003-2009.
[6] CAO Fu-cheng, XING Xiao-xue, LI Yuan-chun, ZHAO Xi-lu. Adaptive trajectory sliding mode impedance control for lower limb rehabilitation robot [J]. 吉林大学学报(工学版), 2016, 46(5): 1602-1608.
[7] HUANG Jing-ying, QIN Da-tong, LIU Yong-gang. Adaptive filter based antilock braking control of electro-hydraulic system for electric vehicle [J]. 吉林大学学报(工学版), 2016, 46(4): 1044-1051.
[8] WU Ai-guo, YANG Shuo, ZHANG Han, LI Chang-bin. Leveling and tracking control of multi-cylinder forging hydraulic press [J]. 吉林大学学报(工学版), 2014, 44(4): 1051-1056.
[9] ZHANG Wei, JI Chang-fei, TONG Xiang-rong. Second-order neighborhoods in complex network [J]. 吉林大学学报(工学版), 2013, 43(02): 404-409.
[10] QI Yi-ming, KONG De-gang, ZANG Xue-bai, ZHAO Yuan-heng. Grinding process control algorithm based on ANFIS [J]. 吉林大学学报(工学版), 2011, 41(增刊1): 231-234.
[11] LUO Xiao-Yuan, WU Xiao-Jing, WU Xue-Li, GUAN Xin-Ping. Observedbased adaptive faulttolerant control for a class of nonlinear systems [J]. 吉林大学学报(工学版), 2011, 41(02): 491-0496.
[12] ZHAO Hong-wei,QI Yi-ming,ZANG Xue-bai,ZHANG Xiao-lin,MA Ying-zhe. Control of milling classification using system identification
and T-S fuzzy neural network
[J]. 吉林大学学报(工学版), 2011, 41(01): 171-0175.
[13] XUE Li-Jun, Hu-Song-Hua, LIANG Bin, LI Cheng, JIANG Wen-Xi. Adaptive terminal sliding mode control for uncertain space robot [J]. 吉林大学学报(工学版), 2010, 40(03): 800-0805.
[14] Wang Qing-nian,Zheng Jun-feng,Wang Wei-hua . New adaptive control strategy of parallel hybrid electric bus [J]. 吉林大学学报(工学版), 2008, 38(02): 249-0253.
[15] Wang Yan-qing, Jiang Chang-sheng . Robust adaptive sliding mode control design for a class of nonlinear uncertain neutral type systems [J]. 吉林大学学报(工学版), 2007, 37(04): 935-938.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!