Journal of Jilin University(Engineering and Technology Edition) ›› 2021, Vol. 51 ›› Issue (1): 163-171.doi: 10.13229/j.cnki.jdxbgxb20190968

Previous Articles    

Rectangular section profile thinning rate of three-dimensional multi-point stretch bending process

Ji-cai LIANG1,2(),Yan-fei LIAO1,2,Fei TENG3(),Ce LIANG1,4,Yi LI1,4   

  1. 1.College of Materials Science and Engineering,Jilin University,Changchun 130022,China
    2.Roll Forging Institute,Jilin University,Changchun 130022,China
    3.School of Mechanical and Vehicle Engineering,Changchun University,Changchun 130012,China
    4.Key Laboratory of Automobile Materials,Ministry of Education,Jilin University,Changchun 130022,China
  • Received:2019-07-24 Online:2021-01-01 Published:2021-01-20
  • Contact: Fei TENG E-mail:liangjicai@126.com;tengfei325@126.com

Abstract:

Aiming at the thinning defect which is easy to occur in the processing of aluminum profiles, the thinning rate of multi-point flexible forming parts was studied on the self-developed flexible three-dimensional bending equipment for aluminum profiles. The variations of the thinning rates of the outer web and the inner web along the length of the profile after the three-dimensional multi-point stretch-bending deformation of the rectangular section profile are studied. The results show that the thinning rates of the outer and inner webs of the profile gradually increase from the symmetry center of the profile along the direction of the profile during the forming process, and the thinning rate of the outer web is larger than that of the inner web. The change of die number makes the maximum thinning rate of the outer web up to 1.682% and the minimum is 1.317%. The thinning amplitude is 0.365%. The maximum thinning rate of the inner web is 1.657%, and the minimum is 1.198%. The thinning amplitude is 0.459%, and the number of dies is the main processing parameter that causes the variation of the thinning rate of the parts.

Key words: material synthesis and processing, multi-point forming, three-dimensional stretch-bending, aluminum alloy profiles, thinning rate

CLC Number: 

  • TG356

Fig.1

Schematic diagram of flexible three-dimensional stretch-bending forming"

Fig.2

Finite element assembly model"

Fig.3

Schematic diagram of horizontal bending and vertical bending"

Fig.4

Sectional view of rectangular profile along profile"

Table 1

Numerical simulation results of profile reduction rate"

间距值l/LΔ1(Δ1/d0)×100%Δ2(Δ2/d0)×100%
1420.10.01920.960.013900.695
2840.20.01940.970.019600.980
4260.30.0251.250.023001.150
5680.40.02641.320.024401.220
7100.50.02681.340.023771.480
8520.60.02821.410.029601.620
9940.70.03361.680.032401.680
11360.80.03761.880.035401.770
12780.90.04342.170.037001.850
14201.00.04702.350.036401.820

Fig.5

Effect of number of unit bodies on thinning rate of outer web and inner web"

Fig.6

Effect of friction coefficient on thinning rate of outer web and inner web"

Fig.7

Effect of post-stretching on thinning rate of outer and inner webs"

Fig.8

Effect of pre-stretching on thinning rate of outer and inner webs"

Fig.9

Optimization of numerical simulation results"

Fig.10

Flexible three-dimensional stretch-bending equipment"

Table 2

Comparison of the thinning rate of profile stretch-bending test and simulation"

间距值l/L实测外腹板减薄率/%模拟外腹板减薄率/%实验内腹板减薄率/%模拟内腹板减薄率/%
1420.10.900.960.710.695
2840.20.990.970.940.980
4260.31.281.251.401.150
5680.41.351.321.261.220
7100.51.311.341.151.480
8520.61.451.411.461.620
9940.71.641.681.651.680
11360.81.921.881.741.770
12780.92.132.171.881.850
14201.02.402.351.821.820
1 滕菲. 铝型材柔性三维拉弯回弹预测及工艺优化[D]. 大连:大连理工大学材料科学与工程学院, 2015.
Teng Fei. Prediction and process optimization of flexible three-dimensional bending and bending of aluminum profiles [D]. Dalian: College of Materials Sciences and Engineering, Dalian University of Technology, 2015.
2 张学广, 贾明萌, 刘纯国, 等. 基于增量控制的型材拉弯轨迹设计及有限元仿真[J]. 吉林大学学报:工学版, 2019, 49 (4): 1272-1279.
Zhang Xue-guang, Jia Ming-meng, Liu Chun-guo, et al. Design and finite element simulation of profile bending trajectory based on incremental control[J]. Journal of Jilin University(Engineering and Technology Edition), 2019,49 (4):1272-1279.
3 郑楠, 贾彬彬, 王卫卫. 力-位移分控多点成形新工艺及其回弹控制机理[J]. 精密成形工程, 2017,9(4):25-30.
Zheng Nan, Jia Bin-bin, Wang Wei-wei. A novel forming technology for multi-point forming with individually controlled force-displacement and the mechanism of controlling springback[J]. Journal of Netshape Forming Engineering, 2017, 9(4):25-30.
4 Gao S, Liang J C, Li Y, et al. Precision forming of the 3D curved structure parts in flexible multi-points 3D stretch-bending process[J]. International Journal of Advanced Manufacturing Technology, 2017, 95(1):1-9.
5 Gu Z W, Jia L, Li X, et al. Stretch bending defect control of L-section SUS301L stainless-steel components with variable contour curvatures[J]. Journal of Iron and Steel Research International,2019(26):1376-1384.
6 林坚磊. 板材柔性压边多点成形工艺及其数值模拟研究[D].长春:吉林大学材料科学与工程学院,2019.
Lin Jian-lei. Multi-point forming process and numerical simulation of flexible blank holder for sheet metal[D]. Changchun: College of Materials Sciences and Engineering, Jilin University, 2019.
7 张昊晗. 多辊下压式柔性拉形过程及其数值模拟研究[D].长春:吉林大学材料科学与工程学院,2011.
Zhang Hao-han. Research on the multi-roller pressing flexible drawing process and its numerical simulation[D]. Changchun: College of Materials Sciences and Engineering, Jilin University, 2011.
8 何芯,周佳,李落星,等.镁合金薄壁空心型材挤压壁厚减薄问题的有限元分析及解决方案[J]. 塑性工程学报,2010,17(2):62-67.
He Xin, Zhou Jia, Li Luo-xing, et al. Finite element analysis and solution of extrusion wall thickness reduction of magnesium alloy thin wall hollow profile[J]. Journal of Plasticity Engineering, 2010, 17(2):62-67.
9 李义, 梁策, 于佳奇, 等. 管材多点柔性拉弯成形制件形状误差研究[J]. 华南理工大学学报:自然科学版, 2018, 46 (7): 24-29.
Li Yi, Liang Ce, Yu Jia-qi, et al. Study on shape error of multi-point flexible bending and forming parts of pipe[J]. Journal of South China University of Technology (Natural Science Edition), 2018, 46(7): 24-29.
10 高嵩, 于鹏, 梁继才, 等. 型材三维拉弯成形数值模拟及回弹特性研究[J]. 锻压技术, 2018, 43(6): 53-59.
Gao Song, Yu Peng, Liang Ji-cai, et al. Study on numerical simulation and springback characteristics of three-dimensional stretch forming of profiles[J]. Forging & Stamping Technology, 2018, 43(6): 53-59.
11 蔡中义, 张海明, 李光俊, 等. 多点拉形数值模拟及模具型面补偿方法[J]. 吉林大学学报:工学版, 2008, 38(2): 329-333.
Cai Zhong-yi, Zhang Hai-ming, Li Guang-jun, et al. Numerical simulation of multi-point drawing and mold profile compensation method[J]. Journal of Jilin University(Engineering and Technology Edition), 2008, 38(2): 329-333.
12 李小强, 杨永真, 李东升, 等. 型材数控拉弯装备技术研究进展[J]. 锻压技术, 2017, 42(4): 1-7, 13.
Li Xiao-qiang, Yang Yong-zhen, Li Dong-sheng, et al. Research progress in numerical control bending equipment technology of profiles[J]. Forging & Stamping Technology, 2017, 42(4): 1-7, 13.
13 梁继才, 李义. 型材多点拉弯成形制件的形状偏差控制[J]. 华南理工大学学报:自然科学版, 2016, 44(7): 29-33.
Liang Ji-cai, Li Yi. Shape deviation control of multi-point bending and forming parts of profiles[J]. Journal of South China University of Technology (Natural Science Edition), 2016, 44(7): 29-33.
14 李义, 梁继才, 滕菲, 等. 型材多点拉弯成形模具型面的分段补偿迭代方法[J]. 吉林大学学报:工学版, 2016, 46(6): 1961-1966.
Li Yi, Liang Ji-cai, Teng Fei, et al. A piecewise compensation iterative method for profile drawing of multi-point drawing and forming of profiles[J]. Journal of Jilin University(Engineering and Technology Edition), 2016, 46(6): 1961-1966.
15 滕菲, 刘博, 张万喜, 等. 柔性三维拉弯成形工艺稳健设计[J]. 吉林大学学报:工学版, 2015, 45(5): 1481-1487.
Teng Fei, Liu Bo, Zhang Wan-xi, et al. The robust design of flexible three-dimensional bending and forming process[J]. Journal of Jilin University(Engineering and Technology Edition), 2015, 45(5): 1481-1487.
16 林祥烽. 铝型材三维拉弯构件成形精度与BP神经网络回弹模型的研究[D]. 长春:吉林大学材料科学与工程学院, 2019.
Lin Xiang-feng. Study on forming accuracy of three-dimensional bending members of aluminum profiles and springback model of BP neural network[D]. Changchun:College of Materials Sciences and Engineering,Jilin University, 2019.
[1] Hong-liang XIANG,Sheng-tao CHEN,Li-ping DENG,Wei ZHANG,Tu-sheng ZHAN. Microstructure and properties of microalloying 2205 duplex stainless steel [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1645-1652.
[2] Xiao-yan GU,Dong-feng LIU,Jing LIU,Da-qian SUN,Hui-feng MA. Effect of welding energy on microstructure and mechanical properties of Cu/Al joints welded by ultrasonic welding [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1600-1607.
[3] Zhuo YI,Wen-zhi FU,Ming-zhe LI. Numerical simulation and experiment on double⁃layered split ultrahigh pressure die [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1593-1599.
[4] Xue⁃guang ZHANG,Ming⁃meng JIA,Chun⁃guo LIU,Guang⁃zhong HE. Trajectory design and FE simulation for profile stretch bending based on incremental control method [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1272-1279.
[5] WANG Chun-sheng, ZOU Li, YANG Xin-hua. Analysis of fatigue life factors of aluminum alloy welded joints based on neighborhood rough set theory [J]. 吉林大学学报(工学版), 2017, 47(6): 1848-1853.
[6] WANG Hui, ZHOU Jie, XIONG Yu, TAO Ya-ping, XIANG Rong. Springback compensation for stamping part with complex surface based on reverse engineering [J]. 吉林大学学报(工学版), 2017, 47(6): 1842-1847.
[7] FU Wen-zhi, LIU Xiao-dong, WANG Hong-bo, YAN De-jun, LIU Xiao-li, LI Ming-zhe, DONG Yu-qi, ZENG Zhen-hua, LIU Gui-bin. Multi-point forming process of 1561 aluminum alloy surfaces [J]. 吉林大学学报(工学版), 2017, 47(6): 1822-1828.
[8] HU Kan, YU Ye, YING Liang, HU Ping, HOU Wen-bin. Optimization design of hot-stamping beam structure considering rollover crash safety of school bus [J]. 吉林大学学报(工学版), 2017, 47(3): 884-890.
[9] LUN Feng-yan, FU Wen-zhi, LI Ming-zhe, YI Zhuo, WANG Xin-tong, CHEN Xue. Forming of flexible rolling of three-dimensional surface based on bended rolls [J]. 吉林大学学报(工学版), 2017, 47(3): 876-883.
[10] CHENG Yan-yan, LI Ming-zhe, XING Jian. Effect of unit form on flexible stretch forming of multi-point die [J]. 吉林大学学报(工学版), 2016, 46(5): 1552-1557.
[11] HU Zhi-qing,ZHEN Jiao-jiao,FENG Zeng-ming,ZHOU Shu-hong. Flexible rolling and stretch forming surface technology and numerical simulation [J]. 吉林大学学报(工学版), 2014, 44(3): 701-707.
[12] WANG Mi, CAI Zhong-yi, LI Ming-zhe, WANG Da-ming. Calculation of bending deformation of flexible roll forming for three-dimensional surface parts and numerical simulation [J]. 吉林大学学报(工学版), 2014, 44(2): 404-408.
[13] CAO Jun-hui, FU Wen-zhi, LI Ming-zhe, PENG He-li. Influence factors on dimpling in multi-point thermoforming for polymer sheet [J]. 吉林大学学报(工学版), 2013, 43(06): 1536-1540.
[14] LI Ren-jun, LI Ming-zhe, XUE Peng-fei, CAI Zhong-yi, QIU Ning-jia. Method of flexible rolling for surface sheet metal [J]. 吉林大学学报(工学版), 2013, 43(06): 1529-1535.
[15] SUI Zhou, CAI Zhong-yi, LAN Ying-wu, LI Ming-zhe. Shape control model for three-dimensional surface part in continuous flexible forming process [J]. 吉林大学学报(工学版), 2013, 43(05): 1302-1306.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!