Journal of Jilin University(Engineering and Technology Edition) ›› 2020, Vol. 50 ›› Issue (5): 1645-1652.doi: 10.13229/j.cnki.jdxbgxb20190550

Previous Articles    

Microstructure and properties of microalloying 2205 duplex stainless steel

Hong-liang XIANG1,2(),Sheng-tao CHEN1,Li-ping DENG1,Wei ZHANG3,Tu-sheng ZHAN4   

  1. 1.School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, China
    2.School of Advanced Manufacturing, Fuzhou University, Jinjiang 362200, China
    3.Technology Center, China Baowu Steel Group,Shanghai 201900, China
    4.Baosteel-desheng Co. , Ltd. , Fuzhou 350600, China
  • Received:2019-05-31 Online:2020-09-01 Published:2020-09-16

Abstract:

2205 duplex stainless steels containing 0.07% and 0.01% Ag were respectively prepared by adding Cu-Ag alloy particles. Meanwhile, the base material 2205 and Cu-bearing 2205 were prepared for comparison with Ag-bearing 2205. The microstructure, mechanical properties, corrosion resistance and antibacterial properties of the four materials were investigated by Optical Microscope(OM), Scanning Electron Microscope(SEM), tensile test, electrochemical workstation and film mulching method. Results reveale that the increase of Ag content increases the amount of α phase and decreases the amount of γ phase in the microstructure. Ag-containing phases exist in both Ag-containing materials. Ag-phases with particle sizes ranging from 1 to 6 μm are distributed at the interface of α matrix and in α/γ phase, while Ag-phases with particle sizes ranging from 80 to 400 nm are distributed in γ phase. Compared with base material 2205, adding of Cu can improve the tensile strength of the materials, but decrease its elongation. The tensile strength and elongation of the materials both increase with the Ag content. The material containing 0.1% Ag exhibits the best comprehensive mechanical properties. In 3.5% NaCl medium, Cu-bearing 2205 exhibits the best corrosion resistance. With the increase in Ag content, the stability and corrosion resistance of passivation film first increases and then decreases. The antibacterial rate of Ag-bearing 2205 materials increases with the contact time. The high Ag-bearing materials exhibit a good antibacterial property, and the base material 2205 and Cu-bearing 2205 do not have antibacterial properties.

Key words: material synthesis and processing technology, Ag-bearing 2205 duplex stainless steel, Ag-bearing phase, mechanical properties, corrosion resistance, antibacterial property

CLC Number: 

  • TG172

Table 1

Chemical composition of four materials"

材料CSiMnSPCrNiMoCuAgFe
A0.010.130.790.010.0121.875.493.050.01-Bal.
B0.010.130.790.010.0121.865.503.051.34-Bal.
C0.010.130.790.010.0121.885.483.051.340.07Bal.
D0.010.130.790.010.0121.795.463.051.340.10Bal.

Fig.1

Metallographic graphs of A, B, C, D"

Fig.2

Phase content of A, B, C, D"

Fig.3

SEM images of specimens"

Fig.4

Mechanical properties"

Fig.5

Potentiodynamic polarization curves"

Table 2

Test parameters of potentiodynamic polarization curves"

材料Icorr/(10-6A?cm-2)
A5.416
B4.829
C5.208
D5.592

Fig.6

Pitting morphologies of A, B, C, D"

Table 3

Main chemical composition of bright field of C and D"

区域CrNiCuAgMnFe
014.342.015.2372.671.206.32
025.231.526.7175.660.987.49

Fig.7

Nyquist plots of A, B, C, D"

Fig.8

Equivalent circuits of (Rs(QRt))"

Table 4

Values of parameters of EIS in(Rs(QRt))"

材料Rs/(Ω·cm2)C/10-5Rt/(106Ω·cm2)n
A4.1025.6285.7230.865
B4.3084.5286.9760.874
C4.1245.3286.0710.863
D4.1746.0285.4790.870

Fig.9

Bactericidal effect of maps of samples after 12 h interaction with bacterial solution"

Table 5

Antibacterial rates(R) of different specimens after different times in bacteria liquid"

材料细菌数/(cfu?ml-1)R/%
3 h12 h24 h3 h12 h24 h
A7.15×1056.62×1056.98×105000
B7.03×1054.52×1054.09×105031.741.4
C5.65×104<10<1092.1>99.9>99.9
D2.80×103<10<1099.6>99.9>99.9
1 吴玖. 双相不锈钢[M]. 北京: 冶金工业出版社, 1999.
2 Li M, Li N, Xu D, et al. Antibacterial performance of a Cu-bearing stainless steel against microorganisms in tap water[J]. Journal of Materials Science & Technology, 2015, 31(3): 243-251.
3 Oguzie E E, Li J, Liu Y, et al. Electrochemical corrosion behavior of novel Cu-containing antimicrobial austenitic and ferritic stainless steels in chloride media[J]. Journal of Materials Science, 2010, 45(21): 5902-5909.
4 Dan Z, Ni H, Xu B, et al. Microstructure and antibacterial properties of AISI 420 stainless steel implanted by copper ions[J]. Thin Solid Films, 2005, 492(1/2): 93-100.
5 Xi T, Yang C, Babar S M, et al. Study of the processing map and hot deformation behavior of a Cu-bearing 317LN austenitic stainless steel[J]. Materials & Design, 2015, 87: 303-312.
6 南黎, 刘永前, 杨伟超, 等. 含铜抗菌不锈钢的抗菌特性研究[J]. 金属学报, 2007, 43(10): 1065-1070.
Nan Li, Liu Yong-qian, Yang Wei-chao, et al. Study on antibacterial properties of copper-containing antibacterial stainless steels[J]. Acta Metallurgica Sinica, 2007, 43(10): 1065-1070.
7 向红亮, 范金春, 刘东, 等. 抗菌时效处理对含Cu双相不锈钢组织和性能的影响 Ⅰ.富Cu相的微观结构及演变规律[J]. 金属学报, 2012, 48(9): 1081-1088.
Xiang Hong-liang, Fan Jin-chun, Liu Dong, et al. Effects of antibacterial aging treatment on microstructure and properties of copper-containing duplex stainless steel Ⅰ. microstructure and evolution of copper-rich phase [J]. Acta Metallurgica Sinica, 2012, 48(9): 1081-1088.
8 良维杰. SUS430含铜抗菌不锈钢之性质研究[D]. 台湾: 国立台湾大学工学院, 2000.
Liang Wei-jie. Performance study of Cu-containing antibacterial SUS 430 stainless steel[D]. Taiwan: School of Engineering, National Taiwan University, 2000.
9 Yokata T, Tochihara M, Ohta M. Silver dispersed stainless steel with antibacterial property[J]. Kawasaki Steel Technical Report, 2001, 2(33): 88-91.
10 Xuan Y, Zhang C, Fan N Q, et al. Antibacterial property and precipitation behavior of Ag-added 304 austenitic stainless steel[J]. Acta Metallurgica Sinica(English Letters), 2014, 27(3): 539-545.
11 杨柯, 董加胜, 陈四红, 等. 含Cu抗菌不锈钢的工艺与耐蚀性能[J]. 材料研究学报, 2006, 20(5): 523-527.
Yang Ke, Dong Jia-sheng, Chen Si-hong, et al. The craftwork performance and resistance to corrosion of the Cu-containing antibacterial stainless steels[J]. Chinese Journal of Materials Research, 2006, 20(5): 523-527.
12 向红亮, 范金春, 刘东, 等. 抗菌时效处理对含Cu双相不锈钢组织和性能的影响 Ⅱ.耐蚀及抗菌性能[J]. 金属学报, 2012, 48(9): 1089-1096.
Xiang Hong-liang, Fan Jin-chun, Liu Dong, et al. Effects of antibacterial aging treatment on microstructure and properties of copper-containing duplex stainless steel II. corrosion resistance and antibacterial properties[J]. Acta Metallurgica Sinica, 2012, 48(9): 1089-1096.
13 郑至轩. 添加金属铜对SUS304不锈钢显微组织及抗菌性质影响[D]. 台湾: 台北科技大学工程学院, 2011.
Zheng Zhi-xuan. Microstructure and antibacterial properties of Cu-modified SUS 304 stainless steel[D]. Taiwan: School of Engineering, National Taipei University of Technology, 2011.
14 Sreekumari K R, Kanavillil N, Takao K, et al. Silver containing stainless steel as a new outlook to abate bacterial adhesion and microbiologically influenced corrosion[J]. ISIJ International2003, 43(11): 1799-1806.
15 Chiang W C, Tseng I S, Moller P, et al. Influence of silver additions to type 316 stainless steels on bacterial inhibition, mechanical properties, and corrosion resistance[J]. Materials Chemistry & Physics, 2010, 119(1/2): 123-130.
16 Huang C F, Chiang H J, Lan W C, et al. Development of silver-containing austenite antibacterial stainless steels for biomedical applications. Part I: microstructure characteristics, mechanical properties and antibacterial mechanisms[J]. Biofouling, 2011, 27(5): 449-457.
17 轩阳. 含银304奥氏体不锈钢中富银相析出行为研究[D]. 北京: 清华大学材料学院, 2014.
Xuan Yang. Study of the silver precipitation behavior in silver-contain 304 austenitic stainless steel [D]. Beijing: School of Materials Science and Engineering, Tsinghua University, 2014.
18 向红亮, 郭培培, 刘东. 含Ag抗菌双相不锈钢组织及抗菌性能研究[J]. 金属学报, 2014, 50(10): 1210-1216.
Xiang Hong-liang, Guo Pei-pei, Liu Dong. Microstructure and antibacterial properties of Ag-bearing duplex stainless steel[J]. Acta Metallurgica Sinica, 2014, 50(10): 1210-1216.
19 郭培培, 向红亮, 李敬鑫, 等. Cu-Ag合金雾化工艺研究[J]. 特种铸造及有色合金, 2013, 33(5): 470-473.
Guo Pei-pei, Xiang Hong-liang, Li Jing-xin, et al. Atomization of Cu-Ag alloy[J]. Special Casting & Nonferrous Alloys, 2013, 33(5): 470-473.
20 朱峰成. 银含量对2205双相不锈钢显微组织及高温机械性质影响之研究[D]. 台湾: 国立高雄大学工学院, 2010.
Zhu Feng-cheng. Effect of silver content on microstructure and high temperature mechanical properties of 2205 duplex stainless steel[D]. Taiwan: School of Engineering, National University of Kaohsiung, 2010.
21 杨才福, 张永权. 铜含量对低碳HSLA钢力学性能的影响[J]. 特殊钢, 1999, 20(1): 27-30.
Yang Cai-fu, Zhang Yong-quan. Effect of Cu content on mechanical properties of low carbon HSLA steel[J]. Special Steel, 1999, 20(1): 27-30.
22 牛绍蕊. 不锈钢的电化学腐蚀性能研究[D]. 兰州: 兰州理工大学材料科学与工程学院, 2010.
Niu Shao-rui. The research of eleetrochemical corrosion resistance of stainless steel[D]. Lanzhou: School of Materials Science and Engineering, Lanzhou University of Technology, 2010.
23 Sourisseau T, Chauveau E, Baroux B. Mechanism of copper action on pitting phenomena observed on stainless steels in chloride media[J]. Corrosion Science, 2005, 47(5): 1097-1117.
[1] Ming LI,Hao-ran WANG,Wei-jian ZHAO. Experimental of loading-bearing capacity of one-way laminated slab with shear keys [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 654-667.
[2] Qing-feng GUAN,Xin-wen YAO,Yang YANG,Ling-yan ZHANG,Di LIU,Chen LI,Peng LYU. Preparation and property of Cr alloying layer on TC4 after surface alloying induced by high current pulsed electron beam [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 2002-2009.
[3] Xin TONG,Ya-jiao ZHANG,Yu-shan HUANG,Zheng-zheng HU,Qing WANG,Zhi-hui ZHANG. Microstructure and mechanical properties of 304L stainless steel processed by selective laser melting [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1615-1621.
[4] Xiao-yan GU,Dong-feng LIU,Jing LIU,Da-qian SUN,Hui-feng MA. Effect of welding energy on microstructure and mechanical properties of Cu/Al joints welded by ultrasonic welding [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1600-1607.
[5] Zhuo YI,Wen-zhi FU,Ming-zhe LI. Numerical simulation and experiment on double⁃layered split ultrahigh pressure die [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1593-1599.
[6] Ming LI,Hao-ran WANG,Wei-jian ZHAO. Mechanical properties of laminated slab with shear keys [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1509-1520.
[7] Xue⁃guang ZHANG,Ming⁃meng JIA,Chun⁃guo LIU,Guang⁃zhong HE. Trajectory design and FE simulation for profile stretch bending based on incremental control method [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1272-1279.
[8] Na WU,Jian ZHUANG,Ke⁃song ZHANG,Hui⁃xin WANG,Yun⁃hai MA. Compression mechanical properties and fracture mechanism of Scapharca Subcrenata shell [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 897-902.
[9] Jin⁃zhong LU,Wan⁃ting ZHOU,Sheng⁃yang ZHANG,Yi⁃kai SHAO,Chang⁃yu WANG,Kai⁃yu LUO. Effect of coverage layer on corrosion resistance of 6061⁃T6 aluminum alloy subjected to laser shock peening [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 842-849.
[10] JIANG Qiu-yue,YANG Hai-feng,TAN Cai-wang. Strengthening properties of welded joints of 22MnB5 super high strength steel [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1806-1810.
[11] GUAN Qing-feng, DONG Shu-heng, ZHENG Huan-huan, LI Chen, ZHANG Cong-lin, LV-Peng. Cr surface alloying of 45# steel by high-current pulsed electron beam treatment [J]. 吉林大学学报(工学版), 2018, 48(4): 1161-1168.
[12] WANG Chun-sheng, ZOU Li, YANG Xin-hua. Analysis of fatigue life factors of aluminum alloy welded joints based on neighborhood rough set theory [J]. 吉林大学学报(工学版), 2017, 47(6): 1848-1853.
[13] WANG Hui, ZHOU Jie, XIONG Yu, TAO Ya-ping, XIANG Rong. Springback compensation for stamping part with complex surface based on reverse engineering [J]. 吉林大学学报(工学版), 2017, 47(6): 1842-1847.
[14] GUAN Qing-feng, ZHANG Yuan-wang, SUN Xiao, ZHANG Chao-ren, LYU Peng, ZHANG Cong-lin. Surface alloying of Al-W alloy by high current pulsed electron beam treatment [J]. 吉林大学学报(工学版), 2017, 47(4): 1171-1178.
[15] HU Kan, YU Ye, YING Liang, HU Ping, HOU Wen-bin. Optimization design of hot-stamping beam structure considering rollover crash safety of school bus [J]. 吉林大学学报(工学版), 2017, 47(3): 884-890.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!