Journal of Jilin University(Engineering and Technology Edition) ›› 2021, Vol. 51 ›› Issue (2): 638-649.doi: 10.13229/j.cnki.jdxbgxb20191171
Rui-feng DU1,2(),Xiang-jun PEI1(),Jun JIA1,3,Xiao-chao ZHANG1,Jun-yu CHEN1,Guo-hua ZHANG1
CLC Number:
1 | Zhang H, Wang L, Bai L Y, et al. Research on the impact response and model of hybrid basalt-macro synthetic polypropylene fiber reinforced concrete[J]. Construction and Building Materials, 2019, 204(20): 303-316. |
2 | 王礼立, 朱兆祥. 应力波基础[M]. 北京: 国防工业出版社, 2005. |
3 | Zhang Q B, Zhao J. Determination of mechanical properties and full-field strain measurements of rock material under dynamic loads[J]. International Journal of Rock Mechanics & Mining Sciences, 2013, 60: 423-439. |
4 | Sunita M, Asce S M, Tanusree C, et al. Determination of high-strain-rate stress-strain response of granite for blast analysis of tunnels[J]. Journal of Engineering Mechanics, 2019, 145(8): 04019057. |
5 | Fakhimi A, Azhari P, Kimberley J. Physical and numerical evaluation of rock strength in split hopkinson pressure bar testing[J]. Computers and Geotechnics, 2018, 102: 1-11. |
6 | Zhou Z L, Zhao Y, Jiang Y H, et al. Dynamic behavior of rock during its post failure stage in SHPB test[J]. Transaction of Nonferrous Metals Society of China, 2017, 27(1): 184-196. |
7 | 陈俊宇, 裴向军, 杜瑞锋, 等. 冲击载荷作用下砂岩的动力学特性及能耗规律[J]. 科学技术与工程, 2019, 19(31): 304-310. |
Chen Jun-yu, Pei Xiang-jun, Du Rui-feng, et al. Dynamic characteristic and energy consumption of sandstone under impact loading[J]. Science Technology and Engineering, 2019, 19(31): 304-310. | |
8 | 梁宁慧, 缪庆旭, 刘新荣, 等. 聚丙烯纤维增强混凝土断裂韧度及软化本构曲线确定[J]. 吉林大学学报: 工学版, 2019, 49(4): 1144-1152. |
Liang Ning-hui, Miao Qing-xu, Liu Xin-rong, et al. Determination of fracture toughness and softening traction-separation law of poly propylene fiber reinforced concrete[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(4): 1144-1152. | |
9 | 王子文, 郭学东, 郭威, 等. 疏水性纳米白炭黑改性沥青及沥青混合料的粘弹特性[J]. 吉林大学学报: 工学版, 2020, 50(5): 1709-1717. |
Wang Zi-wen, Guo Xue-dong, Guo Wei, et al. Research on viscoelasticity of hydrophobic nano-silica modified asphalt and asphalt mixture[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(5): 1709-1717. | |
10 | 郭辉. 典型粘弹性材料力学特征及率温耦合本构关系[D]. 西安: 西北工业大学航空学院, 2018. |
Guo Hui. Mechanical characteristics and constitutive relation of strain rate and temperature dependence of typical viscoelastic materials[D]. Xi'an: School of Aeronautics, Northwestern Polytechnical University, 2018. | |
11 | 王恩元, 孔祥国, 何学秋, 等. 冲击荷载下三轴煤体动力学分析及损伤本构方程[J]. 煤炭学报, 2019, 44(7): 2049-2056. |
Wang En-yuan, Kong Xiang-guo, He Xue-qiu, et al. Dynamic analysis and damage constitute equation of triaxial coal mass under impact load[J]. Journal of China Coal Society, 2019, 44(7): 2049-2056. | |
12 | Kargar A R. An analytical solution for circular tunnels excavated in rock masses exhibiting viscous elastic-plastic behavior[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 124: 104128. |
13 | 朱晶晶. 循环冲击荷载下岩石力学特性与损伤模型试验研究[D]. 长沙: 中南大学资源与安全工程学院, 2012. |
Zhu Jing-jing. Experimental study of rock mechanical properties and damage model under cyclical dynamic loads[D]. Changsha: School of Resources and Safety Engineering, Central South University, 2012. | |
14 | 凌天龙, 刘殿书, 梁书锋, 等. 花岗岩损伤型黏弹性动态本构模型研究[J]. 矿业科学学报, 2019, 4(5): 403-409. |
Ling Tian-long, Liu Dian-shu, Liang Shu-feng, et al. Research on damage viscoelastic dynamic constitutive model of granite[J]. Journal of Mining Science and Technology, 2019, 4(5): 403-409. | |
15 | 蒋邦友, 谭云亮, 王连国, 等. 基于Mogi-Coulomb准则的弹塑性损伤本构模型及其数值实现[J]. 中国矿业大学学报, 2019, 48(4): 784-792. |
Jiang Bang-you, Tan Yun-liang, Wang Lian-guo, et al. Development and numerical implementation of elastoplastic damage constitutive model for rock based on Mogi-Coulomb criterion[J]. Journal of China University of Mining & Technology, 2019, 48(4): 784-792. | |
16 | 李地元, 孙小磊, 周子龙, 等. 多次冲击荷载作用下花岗岩动态累计损伤特性[J]. 实验力学, 2016, 31(6): 827-835. |
Li Di-yuan, Sun Xiao-lei, Zhou Zi-long, et al. On the dynamic accumulated damage characteristic of granite subjected to impact load action[J]. Journal of Experimental Mechanics, 2016, 31(6): 827-835. | |
17 | Shan R L, Song Y W, Song L W, et al. Dynamic property tests of frozen red sandstone using a split hopkinson pressure bar[J]. Earthquake Engineering and Engineering Vibration, 2019, 18(3): 511-519. |
18 | Fu T T, Zhu Z W, Zhang D, et al. Research on damage viscoelastic dynamic constitutive model of frozen soil[J]. Cold Regions Science and Technology, 2019, 160: 209-221. |
19 | 李天涛. 基于能量耗散的强震岩体震裂损伤特性及其孕灾机理研究[D]. 成都: 成都理工大学环境与土木工程学院, 2017. |
Li Tian-tao. Seismic damage characteristics of rock based on energy dissipation and disaster-pregnant mechanism of strong earthquake[D]. Chengdu: College of Environment and Civil Engineering, Chengdu University of Technology, 2017. | |
20 | 杜瑞锋, 裴向军, 张晓超, 等. 泥质砂岩动变形模量的演化规律试验研究[J]. 成都理工大学学报: 自然科学版, 2020, 47(1): 92-101. |
Du Rui-feng, Pei Xiang-jun, Zhang Xiao-chao, et al. Experimental study on evolution of dynamic deformation modulus of argillaceous sandstone[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2020, 47(1): 92-101. | |
21 | 陈松, 乔春生, 叶青, 等. 基于摩尔-库伦准则的断续节理岩体复合损伤本构模型[J]. 岩土力学, 2018, 39(10): 3612-3622. |
Chen Song, Qiao Chun-sheng, Ye Qing, et al. Composite damage constitutive model of rock mass with intermittent joints based on Mohr-Coulomb criterion[J]. Rock and Soil Mechanics, 2018, 39(10): 3612-3622. | |
22 | 曹文贵, 张超, 贺敏, 等. 基于微观力学特征的脆性岩石变形过程模拟[J]. 岩土力学, 2016, 37(10): 2753-2760. |
Cao Wen-gui, Zhang Chao, He Min, et al. Deformation simulation of brittle rock based on micromechanical properties[J]. Soil and Rock Mechanics, 2016, 37(10): 2753-2760. | |
23 | 潘青松, 彭刚, 胡伟华, 等. Weibull统计理论的参数对混凝土全曲线模型的影响[J]. 长江科学院院报, 2015, 32(4): 120-124. |
Pan Qing-song, Peng Gang, Hu Wei-hua, et al. Application of Weibull statistical theory in concrete's parameter curve model[J]. Journal of Yangtze River Scientific Research Institute, 2015, 32(4): 120-124. |
[1] | Zi-wen WANG,Xue-dong GUO,Wei GUO,Meng-yuan CHANG,Wen-ting DAI. Viscoelasticity of hydrophobic nano⁃silica modified asphalt and asphalt mixture [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1709-1717. |
[2] | Hui YE,Yan-rong ZHU,Yong-feng PU. Numerical simulation of strain rate effect of fiber reinforced composites [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1622-1629. |
[3] | WANG Zhi-chen, GUO Nai-sheng, ZHAO Ying-hua, CHEN Zhong-da. Dynamic shear modulus prediction of asphalt mastic based on micromechanics [J]. 吉林大学学报(工学版), 2017, 47(2): 459-467. |
[4] | MA Bin, XU Hong-guo, LIU Hong-fei. Effects of road surface fractal and rubber characteristics on tire sliding friction factor [J]. 吉林大学学报(工学版), 2013, 43(02): 317-322. |
[5] | ZHAO Yan-qing,TAN Yi-qiu,WANG Guo-zhong,WANG Zhi-chao. Effect of viscoelasticity on fatigue cracking of asphalt pavement [J]. 吉林大学学报(工学版), 2010, 40(03): 683-0687. |
[6] | ZHANG Yu-qing,HUANG Xiao-ming. Viscoelasticity prediction of asphalt mixture based on micromechanics [J]. 吉林大学学报(工学版), 2010, 40(01): 52-0057. |
[7] | ZHAO Chang-fu, GAO Zhong-li, MA Zhong-sheng, MA Hong-shun. Experimental Study on Compressing Viscoelasticity of Cancellous Femur Upper Part [J]. 吉林大学学报(工学版), 2002, (2): 87-90. |
[8] | LI Hong, WANG Yu-chen, MA Hong-shun . Experiment Study on the Viscoelasticity of Aorta Abdomen [J]. 吉林大学学报(工学版), 2001, (4): 38-41. |
|