吉林大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (2): 459-467.doi: 10.13229/j.cnki.jdxbgxb201702016

Previous Articles     Next Articles

Dynamic shear modulus prediction of asphalt mastic based on micromechanics

WANG Zhi-chen1, 2, GUO Nai-sheng3, ZHAO Ying-hua3, CHEN Zhong-da2   

  1. 1.School of Materials Science and Engineering, Chang'an University, Xi'an 710061, China;
    2.Key Laboratory of Highway Engineering in Special Region of Ministry of Education, Chang'an University, Xi'an 710064, China;
    3.Institute of Road and Bridge Engineering, Dalian Maritime University, Dalian 116026, China
  • Received:2015-11-22 Online:2017-03-20 Published:2017-03-20

Abstract: Asphalt mastic is regarded as a two-phase composite with asphalt matrix and embedded-matrix coated mineral filler. A micromechanical model is established to predict the dynamic shear modulus of asphalt mastic. The generalized Maxwell model and elastic-viscoelastic correspondence principle are used in this model based on the simplified Christensen-Lo model solutions. The DSR tests for asphalt mastic are conducted to verify the proposed model, and the model parameters affecting the modulus prediction are explored. The results show that, compared with measured modulus, the predicted modulus is acceptable for asphalt with 10% filler volume fraction. However, with filler volume fractions of 20% and 30%, the predicted moduli are smaller than the measured ones, and the discrepancy mainly results from the interaction between filler particles at higher volume fraction. The percolation theory is then introduced to obtained a new modified model, by which the predicted moduli agree with measured ones. The elastic modulus of the fillers has a slight effect on the predicted moduli, and the increase in volume fraction of filler leads to the increase in the predicted modulus.

Key words: road engineering, asphalt mastic, micromechanics, dynamic shear modulus, viscoelasticity, percolation theory

CLC Number: 

  • U414
[1] 李华. 沥青胶浆粘弹性研究[D]. 西安: 长安大学公路学院, 2006.
Li Hua. A study of viscoelastic properties of asphalt mortar[D]. Xi'an: College of Highway, Chang'an University, 2006.
[2] 付海英, 谢雷东, 虞鸣, 等. SBS改性沥青动态剪切流变性能评价的研究[J]. 公路交通科技, 2005, 22 (12): 9-12.
Fu Hai-ying, Xie Lei-dong, Yu Ming, et al. Dynamic shear rheologic properties of SBS-g-M modified asphalt[J]. Journal of Highway and Transportation Research and Development, 2005, 22(12): 9-12.
[3] Bari J, Witczak M W. New predicitive for the viscosity and complex shear modulus of Asphalt binders for use with the mechanistic-empirical pavement design guide[C]∥TRB, Washington D C, 2007.
[4] Christensen D W, Pellinen T, Bonaquist R F. Hirsch model for estimating the modulus of asphalt concrete[J]. Journal of Association of Asphalt Paving Technologists, 2003,72: 97-121.
[5] Druta C. A micromechanical approach for predicting the complex shear modulus and accumulated shear strain of asphalt mixtures from binder and mastic[D]. Baton Rouge: College of Agricultural and Mechanical Louisiana State University , 2006.
[6] Li G Q, Li Y Q, Metcalf J B, et al. Elastic modulus prediction of asphalt concrete[J]. Journal of Materials in Civil Engineering,1999, 11(3): 236-241.
[7] Li Y Q, Metcalf J B. Two-step approach to prediction of asphalt mixtures modulus from two-phase micromechanical models[J]. J Mater Civ Eng, 2005, 17(4): 407-415.
[8] 朱兴一, 黄志义, 陈伟球. 基于复合材料细观力学模型的沥青混合料弹性模量预测[J]. 中国公路学报, 2010, 23(3): 29-33.
Zhu Xing-yi, Huang Zhi-yi, Chen Wei-qiu. Elastic modulus prediction of asphalt concrete based on composite material micromechanics model[J]. China Journal of Highway and Transport, 2010, 23 (3): 29-33.
[9] Shu X, Huang B S. Dynamic modulus prediction of HMA mixtures based on the viscoelastic micromechanical model[J]. Journal of Materials in Civil Engineering, 2008, 20(8): 530-538.
[10] 张裕卿, 黄晓明. 基于微观力学的沥青混合料黏弹性预测[J]. 吉林大学学报:工学版, 2010, 40 (1): 52-57.
Zhang Yu-qing, Huang Xiao-ming. Viscoelasticity prediction of asphalt mixture based on micromechanics[J]. Journal of Jilin University (Engineering and Technology Edition), 2010, 40 (1): 52-57.
[11] 郭乃胜, 赵颖华. 基于细观力学的沥青混合料动态模量预测[J]. 工程力学, 2012, 29 (10): 13-19.
Guo Nai-sheng, Zhao Ying-hua. Dynamic modulus prediction of asphalt mixtures based on micromechanics[J]. Engineering Mechanics, 2012, 29 (10): 13-19.
[12] Luo R, Lytton R L. Self-consistent micromechanics models of an asphalt mixture[J]. Journal of Materials in Civil Engineering, 2011, 23 (1): 49-55.
[13] Zhu X Y, Wang X F, Yu Y. Micromechanical creep models for asphalt-based multi-phase particle-reinforced composites with viscoelastic imperfect[J]. International Journal of Engineering Science, 2014,76:34-46.
[14] Shashidhar N, Shenoy A. On using micromechanical models to describe dynamic mechanical behavior of asphalt mastics[J]. Mechanics of Materials, 2002, 34(10):657-669.
[15] Aigner E, Lackner R, Pichler C. Multiscale prediction of viscoelastic properties of asphalt concrete[J].Journal of Materials in Civil Engineering, 2009, 21(12): 771-780.
[16] Pichler C, Lackner R. Upscaling of viscoelastic of highly-filled composites: Investigation of matrix- inclusion-type morphologies with power-law viscoelastic material response[J]. Composites Science and Technology, 2009, 69:2410-2420.
[17] Christensen R M, Lo K H. Solution for effective shear properties in three phase sphere and cylinder models[J].Journal of the Mechanics and Physies of Solids, 1979,27: 315-330.
[18] Park S W, Schapery R A. Methods of interconversion between linear viscoelastic material functions. Part I-a numerical method based on Prony series[J]. International Journal of Solids and Structures, 1999,36: 1653-1675.
[19] 赵延庆, 吴剑, 文健. 沥青混合料动态模量及其主曲线的确定与分析[J]. 公路, 2006,8: 163-166.
Zhao Yan-qing, Wu Jian, Wen Jian. Determination and analysis of dynamic modulus of asphalt mixture and its master curve[J]. Highway, 2006,8: 163-166.
[20] Schapery R A. A simple collocation method for fitting viscoelastic models to experimental data[R]. GALCIT SM61-23, California Institute of Technology, Pasadena, CA, 1962: 1-13.
[21] Hsu W Y, Giri M R, Ikeda R M. Percolation transition and elastic properties of block copolymers[J]. Macromolecules, 1982,15:1210-1212.
[22] Stauffer D, Aharony A. Introduction to Percolation Theory[M]. 2nd ed. London: Taylor and Francis, 1992.
[23] Alberola N D, Mele P. Viscoelasticity of polymers filled by rigid or soft particles[J]. Polym Compos, 1996,17:751-759.
[1] LI Yi,LIU Li-ping,SUN Li-jun. Prediction model on rutting equivalent temperature for asphalt pavement at different depth [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1703-1711.
[2] ZANG Guo-shuai, SUN Li-jun. Method based on inertial point for setting depth to rigid layer [J]. 吉林大学学报(工学版), 2018, 48(4): 1037-1044.
[3] NIAN Teng-fei, LI Ping, LIN Mei. Micro-morphology and gray entropy analysis of asphalt characteristics functional groups and rheological parameters under freeze-thaw cycles [J]. 吉林大学学报(工学版), 2018, 48(4): 1045-1054.
[4] GONG Ya-feng, SHEN Yang-fan, TAN Guo-jin, HAN Chun-peng, HE Yu-long. Unconfined compressive strength of fiber soil with different porosity [J]. 吉林大学学报(工学版), 2018, 48(3): 712-719.
[5] CHENG Yong-chun, BI Hai-peng, MA Gui-rong, GONG Ya-feng, TIAN Zhen-hong, LYU Ze-hua, XU Zhi-shu. Pavement performance of nano materials-basalt fiber compound modified asphalt binder [J]. 吉林大学学报(工学版), 2018, 48(2): 460-465.
[6] ZHANG Yang-peng, WEI Hai-bin, JIA Jiang-kun, CHEN Zhao. Numerical evaluation on application of roadbed with composite cold resistance layer inseasonal frozen area [J]. 吉林大学学报(工学版), 2018, 48(1): 121-126.
[7] JI Wen-yu, LI Wang-wang, GUO Min-long, WANG Jue. Experimentation and calculation methods of prestressed RPC-NC composite beam deflection [J]. 吉林大学学报(工学版), 2018, 48(1): 129-136.
[8] MA Ye, NI Ying-sheng, XU Dong, DIAO Bo. External prestressed strengthening based on analysis of spatial grid model [J]. 吉林大学学报(工学版), 2018, 48(1): 137-147.
[9] LUO Rong, ZENG Zhe, ZHANG De-run, FENG Guang-le, DONG Hua-jun. Moisture stability evaluation of asphalt mixture based on film pressure model of Wilhelmy plate method [J]. 吉林大学学报(工学版), 2017, 47(6): 1753-1759.
[10] NI Ying-sheng, MA Ye, XU Dong, LI Jin-kai. Space mesh analysis method for shear lag effect of cable-stayed bridge with corrugated steel webs [J]. 吉林大学学报(工学版), 2017, 47(5): 1453-1464.
[11] ZHENG Chuan-feng, MA Zhuang, GUO Xue-dong, ZHANG Ting, LYU Dan, Qin Yong. Coupling effect of the macro and micro characteristics of mineral powder on the low-temperature performance of asphalt mortar [J]. 吉林大学学报(工学版), 2017, 47(5): 1465-1471.
[12] YU Tian-lai, ZHENG Bin-shuang, LI Hai-sheng, TANG Ze-rui, ZHAO Yun-peng. Analyses of defects and causes of steel-plastic compound reinforced retaining wall [J]. 吉林大学学报(工学版), 2017, 47(4): 1082-1093.
[13] CAI Yang, FU Wei, TAO Ze-feng, CHEN Kang-wei. Influence analysis of geotextile on reducing traffic induced reflective cracking using extended finite element model [J]. 吉林大学学报(工学版), 2017, 47(3): 765-770.
[14] LIU Han-bing, ZHANG Hu-zhu, WANG Jing. Effect of dehydration on shear strength properties of compacted clayey soil [J]. 吉林大学学报(工学版), 2017, 47(2): 446-451.
[15] CUI Ya-nan, HAN Ji-wei, FENG Lei, LI Jia-di, WANG Le. Microstructure of asphalt under salt freezing cycles [J]. 吉林大学学报(工学版), 2017, 47(2): 452-458.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!