吉林大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (2): 459-467.doi: 10.13229/j.cnki.jdxbgxb201702016
Previous Articles Next Articles
WANG Zhi-chen1, 2, GUO Nai-sheng3, ZHAO Ying-hua3, CHEN Zhong-da2
CLC Number:
[1] 李华. 沥青胶浆粘弹性研究[D]. 西安: 长安大学公路学院, 2006. Li Hua. A study of viscoelastic properties of asphalt mortar[D]. Xi'an: College of Highway, Chang'an University, 2006. [2] 付海英, 谢雷东, 虞鸣, 等. SBS改性沥青动态剪切流变性能评价的研究[J]. 公路交通科技, 2005, 22 (12): 9-12. Fu Hai-ying, Xie Lei-dong, Yu Ming, et al. Dynamic shear rheologic properties of SBS-g-M modified asphalt[J]. Journal of Highway and Transportation Research and Development, 2005, 22(12): 9-12. [3] Bari J, Witczak M W. New predicitive for the viscosity and complex shear modulus of Asphalt binders for use with the mechanistic-empirical pavement design guide[C]∥TRB, Washington D C, 2007. [4] Christensen D W, Pellinen T, Bonaquist R F. Hirsch model for estimating the modulus of asphalt concrete[J]. Journal of Association of Asphalt Paving Technologists, 2003,72: 97-121. [5] Druta C. A micromechanical approach for predicting the complex shear modulus and accumulated shear strain of asphalt mixtures from binder and mastic[D]. Baton Rouge: College of Agricultural and Mechanical Louisiana State University , 2006. [6] Li G Q, Li Y Q, Metcalf J B, et al. Elastic modulus prediction of asphalt concrete[J]. Journal of Materials in Civil Engineering,1999, 11(3): 236-241. [7] Li Y Q, Metcalf J B. Two-step approach to prediction of asphalt mixtures modulus from two-phase micromechanical models[J]. J Mater Civ Eng, 2005, 17(4): 407-415. [8] 朱兴一, 黄志义, 陈伟球. 基于复合材料细观力学模型的沥青混合料弹性模量预测[J]. 中国公路学报, 2010, 23(3): 29-33. Zhu Xing-yi, Huang Zhi-yi, Chen Wei-qiu. Elastic modulus prediction of asphalt concrete based on composite material micromechanics model[J]. China Journal of Highway and Transport, 2010, 23 (3): 29-33. [9] Shu X, Huang B S. Dynamic modulus prediction of HMA mixtures based on the viscoelastic micromechanical model[J]. Journal of Materials in Civil Engineering, 2008, 20(8): 530-538. [10] 张裕卿, 黄晓明. 基于微观力学的沥青混合料黏弹性预测[J]. 吉林大学学报:工学版, 2010, 40 (1): 52-57. Zhang Yu-qing, Huang Xiao-ming. Viscoelasticity prediction of asphalt mixture based on micromechanics[J]. Journal of Jilin University (Engineering and Technology Edition), 2010, 40 (1): 52-57. [11] 郭乃胜, 赵颖华. 基于细观力学的沥青混合料动态模量预测[J]. 工程力学, 2012, 29 (10): 13-19. Guo Nai-sheng, Zhao Ying-hua. Dynamic modulus prediction of asphalt mixtures based on micromechanics[J]. Engineering Mechanics, 2012, 29 (10): 13-19. [12] Luo R, Lytton R L. Self-consistent micromechanics models of an asphalt mixture[J]. Journal of Materials in Civil Engineering, 2011, 23 (1): 49-55. [13] Zhu X Y, Wang X F, Yu Y. Micromechanical creep models for asphalt-based multi-phase particle-reinforced composites with viscoelastic imperfect[J]. International Journal of Engineering Science, 2014,76:34-46. [14] Shashidhar N, Shenoy A. On using micromechanical models to describe dynamic mechanical behavior of asphalt mastics[J]. Mechanics of Materials, 2002, 34(10):657-669. [15] Aigner E, Lackner R, Pichler C. Multiscale prediction of viscoelastic properties of asphalt concrete[J].Journal of Materials in Civil Engineering, 2009, 21(12): 771-780. [16] Pichler C, Lackner R. Upscaling of viscoelastic of highly-filled composites: Investigation of matrix- inclusion-type morphologies with power-law viscoelastic material response[J]. Composites Science and Technology, 2009, 69:2410-2420. [17] Christensen R M, Lo K H. Solution for effective shear properties in three phase sphere and cylinder models[J].Journal of the Mechanics and Physies of Solids, 1979,27: 315-330. [18] Park S W, Schapery R A. Methods of interconversion between linear viscoelastic material functions. Part I-a numerical method based on Prony series[J]. International Journal of Solids and Structures, 1999,36: 1653-1675. [19] 赵延庆, 吴剑, 文健. 沥青混合料动态模量及其主曲线的确定与分析[J]. 公路, 2006,8: 163-166. Zhao Yan-qing, Wu Jian, Wen Jian. Determination and analysis of dynamic modulus of asphalt mixture and its master curve[J]. Highway, 2006,8: 163-166. [20] Schapery R A. A simple collocation method for fitting viscoelastic models to experimental data[R]. GALCIT SM61-23, California Institute of Technology, Pasadena, CA, 1962: 1-13. [21] Hsu W Y, Giri M R, Ikeda R M. Percolation transition and elastic properties of block copolymers[J]. Macromolecules, 1982,15:1210-1212. [22] Stauffer D, Aharony A. Introduction to Percolation Theory[M]. 2nd ed. London: Taylor and Francis, 1992. [23] Alberola N D, Mele P. Viscoelasticity of polymers filled by rigid or soft particles[J]. Polym Compos, 1996,17:751-759. |
[1] | LI Yi,LIU Li-ping,SUN Li-jun. Prediction model on rutting equivalent temperature for asphalt pavement at different depth [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1703-1711. |
[2] | ZANG Guo-shuai, SUN Li-jun. Method based on inertial point for setting depth to rigid layer [J]. 吉林大学学报(工学版), 2018, 48(4): 1037-1044. |
[3] | NIAN Teng-fei, LI Ping, LIN Mei. Micro-morphology and gray entropy analysis of asphalt characteristics functional groups and rheological parameters under freeze-thaw cycles [J]. 吉林大学学报(工学版), 2018, 48(4): 1045-1054. |
[4] | GONG Ya-feng, SHEN Yang-fan, TAN Guo-jin, HAN Chun-peng, HE Yu-long. Unconfined compressive strength of fiber soil with different porosity [J]. 吉林大学学报(工学版), 2018, 48(3): 712-719. |
[5] | CHENG Yong-chun, BI Hai-peng, MA Gui-rong, GONG Ya-feng, TIAN Zhen-hong, LYU Ze-hua, XU Zhi-shu. Pavement performance of nano materials-basalt fiber compound modified asphalt binder [J]. 吉林大学学报(工学版), 2018, 48(2): 460-465. |
[6] | ZHANG Yang-peng, WEI Hai-bin, JIA Jiang-kun, CHEN Zhao. Numerical evaluation on application of roadbed with composite cold resistance layer inseasonal frozen area [J]. 吉林大学学报(工学版), 2018, 48(1): 121-126. |
[7] | JI Wen-yu, LI Wang-wang, GUO Min-long, WANG Jue. Experimentation and calculation methods of prestressed RPC-NC composite beam deflection [J]. 吉林大学学报(工学版), 2018, 48(1): 129-136. |
[8] | MA Ye, NI Ying-sheng, XU Dong, DIAO Bo. External prestressed strengthening based on analysis of spatial grid model [J]. 吉林大学学报(工学版), 2018, 48(1): 137-147. |
[9] | LUO Rong, ZENG Zhe, ZHANG De-run, FENG Guang-le, DONG Hua-jun. Moisture stability evaluation of asphalt mixture based on film pressure model of Wilhelmy plate method [J]. 吉林大学学报(工学版), 2017, 47(6): 1753-1759. |
[10] | NI Ying-sheng, MA Ye, XU Dong, LI Jin-kai. Space mesh analysis method for shear lag effect of cable-stayed bridge with corrugated steel webs [J]. 吉林大学学报(工学版), 2017, 47(5): 1453-1464. |
[11] | ZHENG Chuan-feng, MA Zhuang, GUO Xue-dong, ZHANG Ting, LYU Dan, Qin Yong. Coupling effect of the macro and micro characteristics of mineral powder on the low-temperature performance of asphalt mortar [J]. 吉林大学学报(工学版), 2017, 47(5): 1465-1471. |
[12] | YU Tian-lai, ZHENG Bin-shuang, LI Hai-sheng, TANG Ze-rui, ZHAO Yun-peng. Analyses of defects and causes of steel-plastic compound reinforced retaining wall [J]. 吉林大学学报(工学版), 2017, 47(4): 1082-1093. |
[13] | CAI Yang, FU Wei, TAO Ze-feng, CHEN Kang-wei. Influence analysis of geotextile on reducing traffic induced reflective cracking using extended finite element model [J]. 吉林大学学报(工学版), 2017, 47(3): 765-770. |
[14] | LIU Han-bing, ZHANG Hu-zhu, WANG Jing. Effect of dehydration on shear strength properties of compacted clayey soil [J]. 吉林大学学报(工学版), 2017, 47(2): 446-451. |
[15] | CUI Ya-nan, HAN Ji-wei, FENG Lei, LI Jia-di, WANG Le. Microstructure of asphalt under salt freezing cycles [J]. 吉林大学学报(工学版), 2017, 47(2): 452-458. |
|