Journal of Jilin University(Engineering and Technology Edition) ›› 2020, Vol. 50 ›› Issue (5): 1709-1717.doi: 10.13229/j.cnki.jdxbgxb20190611

Previous Articles    

Viscoelasticity of hydrophobic nano⁃silica modified asphalt and asphalt mixture

Zi-wen WANG1(),Xue-dong GUO2,Wei GUO2,Meng-yuan CHANG2,Wen-ting DAI2()   

  1. 1.Changji Intercity Railway Co. Ltd. , Changchun 130021, China
    2.College of Transportation, Jilin University, Changchun 130022, China
  • Received:2019-06-17 Online:2020-09-01 Published:2020-09-16
  • Contact: Wen-ting DAI E-mail:wangziwen7007@163.com;daiwt@jlu.edu.cn

Abstract:

In order to study the viscoelasticity of the hydrophobic nano-silica modified asphalt and its mixture, the hydrophobic nano-silica obtained by surface modification of silane coupling agent was used to modify the asphalt. Penetration test, rotational viscosity test, shear rheological test and static creep test were carried out on the modified asphalt and modified asphalt mixture. The penetration index, rotational viscosity, complex shear modulus, elastic shear modulus, viscoelastic modulus, phase angle, rutting factor, strain difference and Burgers viscoelastic parameters were evaluated for viscoelasticity. The results show that the incorporation of hydrophobic nano-silica can enhance the viscoelasticity and high-temperature stability of asphalt mixture, and improve the temperature sensing performance of asphalt and the thixotropy under normal temperature. According to the main curve analysis, in the low frequency region, the incorporation of hydrophobic nano-silica can improve the phase angle of the asphalt and enhance the elastic property of the asphalt. By analyzing the Burgers model parameters of hydrophobic nano-silica modified asphalt, it is found that the incorporation of hydrophobic nano-silica can improve the viscosity of asphalt. The results of static creep test show that the incorporation of hydrophobic nano-silica can significantly reduce the strain value of the asphalt mixture at the same temperature. In addition, the incorporation of the hydrophobic nano-silica modifier can enhance the elastic portion of the asphalt mixture, increasing viscous flow deformation and viscoelastic delayed deformation.

Key words: surface modification, hydrophobic nano-silica, viscoelasticity, dynamic shear rheology test, Burgers model

CLC Number: 

  • U416

Fig.1

Grafting mechanism of hydrophobic nanosilica"

Table 1

Technical parameter of hydrophobic nanosilica"

项目比表面积/(m2·g-1平均粒度/nmPH值SiO2含量/%
试验结果125±20125.0~8.0≥99.8
试验标准130±30≤203.7~6.5≥99.8

Fig.2

SEM of nanosilica(X60000)"

Fig.3

SEM of hydrophobic nanosilica(X60000)"

Table 2

Technical parameters of asphalt"

技术项目试验方法实测值
针入度/(25 °C,0.1 mm)T060466.9
软化点/°CT060646.7
动力粘度/(60 °C,pa·s)T0620190
延度/(10 °C,cm)T0605≥45
蜡含量/%T06151.8
闪点/°CT0611328
密度/(25 °C,g·cm-3T06031.030

Table 3

Gradation of AC-16 and technical parameters of fine aggregate"

参数粒径/mm
0.0750.150.30.61.18
表观相对密度/(g·cm-32.672.692.702.702.75
表观相对密度/(g·cm-32.612.622.632.652.67
表观相对密度/(g·cm-32.592.602.592.572.55
质量分数/%2.53.04.06.09.5

Table 4

Gradation of AC-16 and technical parameters of coarse aggregate"

参数粒径/mm
2.364.759.513.216
表观相对密度/(g·cm-32.742.742.782.782.78
表观相对密度/(g·cm-32.682.712.762.772.78
表观相对密度/(g·cm-32.642.682.752.762.77
质量百分率/%15271575

Table 5

Penetration of BA and SCASBA"

沥青15 °C 针入度/mm25 °C 针入度/mm30 °C 针入度/mm
BA17.563.088.1
SCASBA16.255.483.0

Table 6

Penetration index of BA and SCASBA"

沥青AKPIR2
BA0.040 260.749 49-0.043 150.998 666
SCASBA0.042 550.650 35-0.407 670.998 424

Fig.4

Viscosity-temperature curve of BA and SCASBA"

Table 7

Regression analysis results of viscosity of BA and SCASBA"

参数SCASBABA
A620.07247.726
B-0.043-0.025
R20.997 8900.988 377

Fig.5

Result of two asphalt binders at different temperatures"

Table 8

Calculation results of shift factor"

参数30 °C40 °C50 °C60 °C
αt1010.150.032 258
lgαt10-0.823 9-1.491 36

Fig.6

Master curves of BA and SCASBA"

Table 9

Burgers parameters of two asphalt binders based on DSR test"

类型E1E2η1η2
BA 30 °C2 766 4551 872 35457 345.2167 688.74
BA 40 °C1 296 750503 0258 364.7518 418.13
BA 50 °C503 299.2136 915.81 405.4145 283.488
BA 60 °C254 767.164 799.75343.002 22 266.984

SCASBA

30 °C

2 087 6961 597 64848 252.0455 364.65

SCASBA

40 °C

1 314 576423 743.27 360.99416 130.09

SCASBA

50 °C

519 572.7138 212.61 344.8555 337.711

SCASBA

60 °C

233 91077 542.2309.6722 316.33

Fig.7

Static creep strain curves of two asphalt mxitures at different temperatures"

Table 10

Strain difference of two asphalt mixtures under different loading cycles"

加载次数Δ1Δ2Δ3Δ4
11.65×10-33.36×10-37.34×10-37.98×10-3
101.62×10-32.77×10-35.45×10-36.81×10-3
1008.76×10-41.01×10-41.32×10-31.56×10-3
5005.32×10-45.54×10-46.05×10-46.94×10-4
10004.50×10-44.54×10-44.63×10-44.95×10-4
30003.53×10-43.55×10-43.61×10-43.84×10-4

Table 11

Burgers parameters of two asphalt mixtures based on static load creep test"

项目E1E2η1η2R
BA-AC(30 °C)36.5114.1627 332.33 632.80.973
SCASBA-AC(30 °C)56.062.7566 977.33 386.60.987
BA-AC(40 °C)19.783.6453 161.01 271.10.982
SCASBA-AC(40 °C)31.835.0346 585.7959.20.991
BA-AC(50 °C)15.744.3329 777.6860.70.975
SCASBA-AC(50 °C)18.715.1203 886.5356.40.991
BA-AC(60 °C)13.328.3225 465.8525.90.979
SCASBA-AC(60 °C)16.710.4163 449.7273.00.994
1 韦大川, 王云鹏, 李世武. 橡胶粉与SBS复合改性沥青路用性能与微观结构[J]. 吉林大学学报: 工学版, 2008, 38(3): 525-529.
Wei Da-chuan, Wang Yun-peng, Li Shi-wu. Physical properties and microstructure of waste rubber powder and SBS complex modified asphalt[J]. Journal of Jilin University(Engineering and Technology Edition), 2008, 38(3): 525-529.
2 樊亮, 张玉贞, 刘延军, 等. 纳米材料与技术在沥青路面中的应用研究进展[J]. 材料导报, 2010, 24(23): 72-75.
Fan Liang, Zhang Yu-zhen, Liu Yan-jun, et al. Recent application progress of nanometer material & technology in asphalt pavement[J]. Materials Review, 2010, 24(23): 72-75.
3 夏纬通. 白炭黑在灯泡工业中的应用[J]. 江苏化工, 1995(1): 7-11.
Xia Wei-tong. Application of silica in light bulb industry[J]. Jiangsu Chemical Industry, 1995(1): 7-11.
4 刘建国, 季桂娟, 郝磊, 等. 油页岩灰渣提取白炭黑的方法[J]. 吉林大学学报: 地球科学版, 2011, 41(4): 1192-1196.
Liu Jian-guo, Ji Gui-juan, Hao Lei, et al. Method for extracting white carbon black by oil shale ash[J]. Journal of Jilin University(Earth Science Edition), 2011, 41(4): 1192-1196.
5 张兴友, 谭忆秋, 王哲人. 白炭黑改性沥青及其混合料的路用性能研究[J]. 公路交通科技, 2005, 22(7): 23-40.
Zhang Xing-you, Tan Yi-qiu, Wang Zhe-ren. Study on performance of silica modified asphalt and its mixture[J]. Journal of Highway and Transportation Research and Development, 2005, 22(7): 23-40.
6 林桂. 纳米粉体在橡胶基质中的聚集和分散研究[D]. 北京: 北京化工大学材料科学与工程学院, 2004.
Lin Gui. Study on aggregation and dispersion of nano powders in rubber matrix[D]. Beijing: School of Materials Science and Engineering, Beijing University of Chemical Technology, 2004.
7 于欣伟, 陈姚. 白炭黑的表面改性技术[J]. 广州大学学报: 自然科学版, 2002, 1(6): 12-16.
Yu Xin-wei, Chen Yao. Surface modification technology of silica[J]. Journal of Guangzhou University(Natural Science Edition), 2002, 1(6): 12-16.
8 Guo W, Guo X D, Sun M Z, et al. Evaluation of the durability and the property of an asphalt concrete with nano hydrophobic silane silica in spring-thawing Season[J]. Applied Science, 2018, 8(9): 1475-1493.
9 赵延庆, 谭忆秋, 王国忠, 等. 粘弹性对沥青路面疲劳开裂的影响[J]. 吉林大学学报: 工学版, 2010, 40(3): 683-687.
Zhao Yan-qing, Tan Yi-qiu, Wang Guo-zhong, et al. Effect of viscoelasticity on fatigue cracking of asphalt pavement[J]. Journal of Jilin University(Engineering and Technology Edition), 2010, 40(3): 683-687.
10 Gao J F, Wang H N, You Z P, et al. Rheological behavior and sensitivity of wood-derived bio-oil modified asphalt binders[J]. Applied Science, 2018, 8(6): 919-936.
11 Stefan H. Comments on a priori and a posteriori evaluations of sub-grid scale models for the Burgers’ equation[J]. Computers & Fluids, 2016, 138: 35-37.
12 Yuan X F, Ma S, Jiang S H. Form-finding of tensegrity structures based on the Levenberg-Marquardt method[J]. Computers & Fluids, 2017, 192: 171-180.
[1] WANG Zhi-chen, GUO Nai-sheng, ZHAO Ying-hua, CHEN Zhong-da. Dynamic shear modulus prediction of asphalt mastic based on micromechanics [J]. 吉林大学学报(工学版), 2017, 47(2): 459-467.
[2] MA Bin, XU Hong-guo, LIU Hong-fei. Effects of road surface fractal and rubber characteristics on tire sliding friction factor [J]. 吉林大学学报(工学版), 2013, 43(02): 317-322.
[3] CHENG Yong-chun, GUO Qing-lin, TAN Guo-jin. Improved viscoelastic parameter identification for asphalt mixture [J]. , 2012, (03): 629-633.
[4] REN Li-Li, ZHOU Jiang, TONG Jin. Factors influencing degree of substitution of hydroxyl groups of surfacemodified starch films with alkenyl succinic anhydrides [J]. 吉林大学学报(工学版), 2010, 40(06): 1624-1628.
[5] ZHAO Yan-qing,TAN Yi-qiu,WANG Guo-zhong,WANG Zhi-chao. Effect of viscoelasticity on fatigue cracking of asphalt pavement [J]. 吉林大学学报(工学版), 2010, 40(03): 683-0687.
[6] ZHANG Yu-qing,HUANG Xiao-ming. Viscoelasticity prediction of asphalt mixture based on micromechanics [J]. 吉林大学学报(工学版), 2010, 40(01): 52-0057.
[7] SUN Guoen, ZHANG Li, LI Hongji, ZHANG Chunling, LIANG Jicai, ZHANG Wanxi. Structure and Properties of EVA/Al2O3 Nanocomposite Materials [J]. 吉林大学学报(工学版), 2005, 35(06): 577-0581.
[8] LIU Yan, YU Sirong, REN Luquan. Microstructure of powder metallurgy material surface layer modified by laser cladding nano-Al2O3 [J]. 吉林大学学报(工学版), 2004, (3): 392-396.
[9] ZOU Hui, GUAN Qing-feng, ZHANG Qing-yu, DONG Chuang, LIANG Liang. Surface modification of 45# steel by high-current pulsed electron beam [J]. 吉林大学学报(工学版), 2004, (1): 127-131.
[10] ZHAO Chang-fu, GAO Zhong-li, MA Zhong-sheng, MA Hong-shun. Experimental Study on Compressing Viscoelasticity of Cancellous Femur Upper Part [J]. 吉林大学学报(工学版), 2002, (2): 87-90.
[11] LI Hong, WANG Yu-chen, MA Hong-shun . Experiment Study on the Viscoelasticity of Aorta Abdomen [J]. 吉林大学学报(工学版), 2001, (4): 38-41.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!