Journal of Jilin University(Engineering and Technology Edition) ›› 2021, Vol. 51 ›› Issue (3): 855-865.doi: 10.13229/j.cnki.jdxbgxb20190607

Previous Articles     Next Articles

Effect of carbon equivalent elements on fluidity of hypoeutectic ductile iron by cellular automata finite element method

Jin-guo WANG1,2(),Kai HUANG1,2,Rui-fang YAN1,2,Shuai REN1,2,Zhi-qiang WANG1,2,Jin GUO1,2   

  1. 1.Key Laboratory of Automotive Materials,Ministry of Education,Jilin University,Changchun 130022,China
    2.College of Materials Science and Engineering,Jilin University,Changchun 130022,China
  • Received:2019-06-17 Online:2021-05-01 Published:2021-05-07

Abstract:

The parameter system of the Cellular Automata Finite Element method (CAFE) for simulating ductile iron grain structure was optimized. Based on a large number of preliminary experiments, the surface nucleation parameters and the nucleus parameters of the eutectic grains were optimized. The flow length of the spheroidal graphite spiral samples with various carbon and silicon contents and the solidification structure at the tip of the stream were simulated. In the verification test, the grain boundary model was realized by the constitutive algorithm for the inconspicuous ductile iron eutectic grains. The flow length of the obtained spiral sample and Voronoi grain distribution map were compared with the simulation results. It was shown that after the carbonization or silicon enhancement treatment, the crystal grains at the end of the spiral sample stream were refined in the hypoeutectic ductile iron sample, and the fluidity of the sample was improved. Moreover, the simulation results are in good agreement with the experimental verification results, and the method for evaluating the fluidity by numerical simulation is established.

Key words: metal material, hypoeutectic ductile iron, cellular automata finite element method(CAFE) method, carbon equivalent element, alloy fluidity, network algorithm, grain refinement

CLC Number: 

  • TG143.5

Fig.1

Volume-mesh model of spiral sample"

Table 1

Mass fraction of each element ofhypoeutectic ductile iron"

编号w(C)w(Si)w(Mn)w(Cu)w(Ni)
A12.82.850.20.60.65
A23.12.850.20.60.65
A23.42.850.20.60.65
B13.12.550.20.60.65
B23.12.850.20.60.65
B33.13.150.20.60.65

Table 2

Nucleation parameters with differentC mass fraction"

质量分数/%ΔTs,max/KΔTs,δ/K

ns,max

/m-2

ΔTv,max/KΔTv,δ/K

nv,max

/m-3

2.810.11.0×10860.15.0×109
3.110.11.4×10880.17.0×109
3.410.11.9×108100.19.5×109

Table 3

Nucleation parameters with differentSi mass fraction"

质量分数/%ΔTs,max/KΔTs,δ/K

ns,max

/m-2

ΔTv,max/KΔTv/K

nv,max

/m-3

2.5510.11.3×10870.16.5×109
2.8510.11.4×10880.17.0×109
3.1510.11.5×10890.17.5×109

Table 4

Parameters of Tl, Ts, a2 and a3 withdifferent C mass fraction"

编号质量分数/%Tl/KTs/Ka2/ma3/m
A12.8127811663.46×10-83.61×10-9
A23.1125211693.01×10-83.02×10-9
A33.4122711682.64×10-82.55×10-9

Table 5

Parameters of Tl, Ts, a2 and a3 withdifferent Si mass fraction"

编号质量分数/%Tl/KTs/Ka2/ma3/m
B12.55125511663.02×10-83.03×10-9
B22.85125211693.01×10-83.02×10-9
B33.15124811712.99×10-82.99×10-9

Fig.2

Simulated flow length and corresponding experimental verification of spiral samples with three C mass fraction"

Fig.3

Simulation results of stream tip solidification structure of A1, A2 and A3"

Fig.4

Experimental verification results of tip solidification structure of A1, A2, and A3 streams"

Table 6

Simulated stream tip grain statisticsof A1、 A2 and A3"

参 数A1A2A3
晶粒数量14 34317 75221 238
晶粒平均直径/μm63.7357.3951.06

Table 7

Fluidity test stream tip grainstatistics of A1,A2 and A3"

参 数A1A2A3
晶粒数量6843851714 896
晶粒平均直径/μm69.9458.8041.84

Fig.5

Graphite sphere morphology at differentmagnifications of SEM"

Fig.6

Schematic diagram of graphite nucleation and growth at different carbonmass fraction"

Fig.7

Flow length and experimental verification results of spiral samples with three Si mass fraction"

Fig.8

Simulation results of stream tip solidification structure of B1,B2 and B3"

Fig.9

Experimental verification results of tip solidification structure of B1, B2 and B3 streams"

Table 8

Simulated stream tip grain statisticsof B1, B2 and B3"

参 数B1B2B3
晶粒数量17 31817 75218 823
晶粒平均直径/μm60.3757.3955.16

Table 9

Fluidity test stream tip grain statisticsof B1, B2 and B3"

参 数B1B2B3
晶粒数量7703851710 987
晶粒平均直径/μm62.8258.8050.76
1 王金国, 任帅, 闫瑞芳, 等. TiC颗粒对铸态球墨铸铁组织和力学性能的影响[J]. 吉林大学学报:工学版, 2019, 49(6): 2010-2018.
Wang Jin-guo, Ren Shuai, Yan Rui-fang, et al. Effect of TiC particles on microstructure and mechanical properties of as cast ductile iron[J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 2010-2018.
2 何东野, 杨慎华, 寇淑清. 发动机曲轴箱轴承座裂解加工数值分析[J]. 吉林大学学报:工学版, 2009, 39(1): 78-82.
He Dong-Ye, Yang Shen-hua, Kou Shu-qing. Numerical analysis on fracture splitting technology of main bearing block of engine[J]. Journal of Jilin University(Engineering and Technology Edition), 2009, 39(1): 78-82.
3 Pathak N, Kumar A, Yadav A, et al. Effects of mould filling on evolution of the solid-liquid interface during solidification[J]. Applied Thermal Engineering, 2009, 29(17-18): 3669-3678.
4 Vijayaram T R, Sulaiman S, Hamouda A M S, et al. Numerical simulation of casting solidification in permanent metallic molds[J]. Journal of Materials Processing Technology, 2006, 178(1-3): 29-33.
5 张振波, 盛文斌, 孙策. 大型球墨铸铁下箱体铸造过程数值模拟及工艺优化[J]. 热加工工艺, 2019, 48(7): 113-116, 120.
Zhang Zhen-bo, Sheng Wen-bin, Sun Ce. Numerical simulation and process optimization of large spheroidal graphite cast iron lower box[J]. Hot Working Technology, 2019, 48(7): 113-116, 120.
6 陈映东, 丁旭, 沈刚, 等. 大型球墨铸铁蜗壳件砂型铸造模拟分析与工艺优化[J]. 铸造技术, 2018, 39(10): 2249-2252, 2264.
Chen Ying-dong, Ding Xu, Shen Gang, et al. Large nodular cast iron volute parts sand ca-sting simulation analysis and process optimization[J]. Foundry Technology, 2018, 39(10): 2249-2252, 2264.
7 魏胜辉, 张帆, 卢景秀, 等. 球墨铸铁轴封体铸造工艺设计及数值模拟[J]. 铸造技术, 2017, 38(6): 1493-1496.
Wei Sheng-hui, Zhang Fan, Lu Jing-xiu, et al. Casting process design and numerical simulation of ductile iron shaft seal[J]. Foundry Technology, 2017, 38(6): 1493-1496.
8 赵二梅, 鲁晨光, 杨刚. 球墨铸铁壳体件制备过程的数值模拟研究[J]. 铸造技术, 2015, 36(3): 809-812.
Zhao Er-mei, Lu Chen-guang, Yang Gang. Numerical simulation on manufacturing process of ductile cast iron shell parts[J]. Foundry Technology, 2015, 36(3): 809-812.
9 张晓敏. 高韧性球墨铸铁冷却壁的组织性能研究及凝固模拟试验[D]. 郑州:郑州大学材料科学与工程学院, 2010.
Zhang Xiao-min. Study on the microstructure and properties of high-ductility ductile iron cooling stave and its experiment of solidified simulation[D]. Zhengzhou:School of Materials Science and Engineering, Zhengzhou University, 2010.
10 Burbelko A A, Gurgul D, Kapturkiewicz W, et al. Cellular automaton modelling of ductile iron microstructure in the thin wall casting[J]. IOP Conference Series Materials Science and Engineering, 2012, 33(1): 012083.
11 Burbelko A A, Fraś E, Kapturkiewicz W. Modelling of dendritic growth during unidirectional solidification by the method of cellular automata[J].Materials Science Forum, 2010, 649: 217-222.
12 Zhang Lei, Zhao Hong-lei, Zhu Ming-fang. Simulation of solidification microstructure of spheroidal graphite cast iron using a cellular automaton method[J]. Acta Metallurgica Sinica Chinese Edition, 2015, 51(2): 148-158.
13 王雪涛. 风电球墨铸铁件铸造工艺及组织数值模拟的优化[D]. 济南:山东大学材料科学与工程学院, 2017.
Wang Xue-tao. Numerical simulation optimization of casting processes and structure of ductile iron casting for wind power[D]. Jinan:School of Materials Science and Engineering, Shandong University, 2017.
14 Rappaz M. Modeling and characterization of grain structures and defects in solidification[J]. Current Opinion in Solid State & Materials Science, 2016, 20(1): 37-45.
15 Lee S Y, Lee S M, Hong C P. Numerical modeling of deflected columnar dendritic grains solidified in a flowing melt and its experimenttal verification[J]. ISIJ International, 2000, 40(1): 48-57.
16 殷竞存, 朱晓临, 郭清伟. 基于分子间作用力改进的液体表面张力处理算法[J]. 合肥工业大学学报:自然科学版, 2018, 41(11): 1574-1578.
Yin Jing-cun, Zhu Xiao-lin, Guo Qing-wei. An improved liquid surface tension processing algorithm based on inter-molecular forces[J]. Journal of Hefei University of Technology(Natural Science), 2018, 41(11): 1574-1578.
17 黄锋. 薄带双辊铸轧凝固过程组织演变的数值模拟[D]. 沈阳:东北大学材料与冶金学院, 2015.
Huang Feng. Numerical simulation of microst-ructure evolution during solidification of twin roll casting process[D]. Shenyang:School of Materials and Metallurgy, Northeastern University, 2015.
18 Rivera G, Boeri R, Sikora J. Revealing and characterising solidification structure of ductile cast iron[J]. Materials Science and Technology, 2002, 18(6): 691-697.
19 Ghahremaninezhad A, Ravi-Chandar K. Deformation and failure in nodular cast iron[J]. Acta Materialia, 2012, 60(5): 2359-2368.
20 Górny M. Fluidity and temperature profile of ductile iron in thin sections[J]. Journal of Iron and Steel Research(International), 2012, 19(8): 52-59.
21 高升. 球墨铸铁碳当量的研究及生产实践[D]. 武汉:华中科技大学材料科学与工程学院, 2005.
Gao Sheng. Research and production practice of carbon equivalent of nodular cast iron[D]. Wuhan:School of Materials Science and Engineering, Huazhong University of Science and Technology, 2005.
22 张湛, 周尧和. 液态金属停止流动机理的实验研究[J]. 西北工业大学学报, 1965(1): 29-39.
Zhang Zhan, Zhou Yao-he. Experimental study on the mechanism of liquid metal stopping flow[J]. Journal of Northwestern Polytechnical University, 1965(1): 29-39.
23 吴德海. 球墨铸铁[M]. 北京:中国水利水电出版社, 2006.
24 Carazo F D, Dardati P M, Celentano D J, et al. Nucleation and growth of graphite in eutectic spheroidal cast iron: modeling and testing[J].Metallurgical and Materials Transactions A, 2016, 47(6): 2625-2641.
25 Stefanescu D M, Alonso G, Larrañaga P, et al. On the stable eutectic solidification of iron carb-on silicon alloys[J]. Acta Materialia, 2016, 103: 103-114.
26 Ghassemali E, Hernando Jua C, Stefanescu D M, et al. Revisiting the graphite nodule in ductile iron[J]. Scripta Materialia, 2019, 161: 66-69.
27 李桐桐. 球墨铸铁中碳元素扩散系数的计算及分析[D]. 济南:山东大学材料科学与工程学院, 2013.
Li Tong-tong. The calculation and analysis of carbon diffusion coefficient in ductile iron[D]. Jinan:School of Materials Science and Engineering, Shandong University, 2013.
28 Stefanescu D. Science and Engineering of Casting Solidification[M]. Second Edition.New York: Springer, 2009.
29 Fredriksson H, Stjerndah J, Tinoco J. On the solidification of nodular cast iron and its relation to the expansion and contraction[J]. Materials Science & Engineering:A, 2005, 413/414: 363-372.
30 张蕾, 赵红蕾, 朱鸣芳. 球墨铸铁凝固显微组织的元胞自动机模拟[J]. 金属学报, 2015, 51(2): 148-158.
Zhang Lei, Zhao Hong-lei, Zhu Ming-fang. Simulation of solidification microstruc-ture of spheroidal graphite cast iron using a cellular automaton method[J]. Acta Metallurgica Sinica, 2015, 51(2): 148-158.
31 井ノ山哉, 山本悟, 川野豊. 反应论铸铁学[M].庞建路,杨丽萍译. 北京:机械工业出版社, 2012.
32 周学源. 合金元素对渗碳体长大动力学及热稳定性影响[D]. 南京:东南大学材料科学与工程学院, 2014.
Zhou Xue-yuan. The effect of alloy elements on the coarsening kinetics and thermal stability of cementite[D]. Nanjing:School of Materials Science and Engineering, Southeast University, 2014.
[1] Wen-cui XIU,Hua WU,Ying HAN,Yun-xu LIU. Effect of isothermal heat treatment temperature on microstructure and mechanical properties of super bainite [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 520-525.
[2] Wu⁃jiao XU,Cheng⁃shang LIU,Xin⁃yao LU. Simulation and prediction of surface roughness of 6061 aluminum alloy workpiece after shot peening [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1280-1287.
[3] ZHANG Jia-tao, ZHAO Yu-guang, TAN Juan. Effect of starting microstructure on refining potency of electro-pulsing on reverse austenite grain [J]. 吉林大学学报(工学版), 2016, 46(1): 193-198.
[4] ZHANG Zhi-qiang, JIA Xiao-fei, YUAN Qiu-ju. Springback analysis of trip high strength steel based on Yoshida-Uemori model [J]. 吉林大学学报(工学版), 2015, 45(6): 1852-1856.
[5] ZHANG Zhi-qiang, JIA Xiao-fei, ZHAO Yong, LI Xiang-ji. Experiment and simulation on quenching interface heat transfer coefficient of high-strength boron steel [J]. 吉林大学学报(工学版), 2015, 45(4): 1195-1199.
[6] YING Liang, DAI Ming-hua, HU Ping, FAN Zheng-shuai, SHEN Guo-zhe, SHI Dong-yong. Strength and hardness prediction based on cooling rate for hot forming high strength steel [J]. 吉林大学学报(工学版), 2014, 44(6): 1716-1722.
[7] LI Zhi-jie, PENG Yan, LIU Hong-min, WANG Su-fen, XIAO Li-zi. Flow stress of medium carbon steel under warm compression deformation [J]. 吉林大学学报(工学版), 2013, 43(05): 1320-1324.
[8] CHENG Yong-chun, JIANG Ping, TAN Guo-jin, SUN Yan-yi, JIAO Yu-bo. Real-time evaluation of soil slope stability based on the information of displacement monitor [J]. , 2012, (06): 1487-1490.
[9] GAO Sheng-yuan,WANG Tong-hui,LE Qi-chi,ZHANG Zhi-qiang,JIA Zheng,CUI Jian-zhong. Refinement effect of MgCO3 in AZ31 magnesium alloy [J]. 吉林大学学报(工学版), 2011, 41(6): 1625-1629.
[10] GUAN Qing-feng,QIU Dong-hua,LI Yan,CHEN Kang-min,AN Chun-xiang,LONG He-sun. The formation behavior of aging precipitates on 17-4PH stainless steel [J]. 吉林大学学报(工学版), 2011, 41(03): 654-658.
[11] Du Zhongze, Huang Junxia, Fu Hanguang, Wang Jingtao, Zhao Xicheng. Microstructure and mechanical property of 65Mn steel after severe plastic deformation [J]. 吉林大学学报(工学版), 2006, 36(02): 143-0147.
[12] Song Minxia,Zhao Xihua,Guo Wei,Feng Jicai. Diffusion Bonding of Ti-6Al-4V to ZQSn10-10 with Nickel Interlayer [J]. 吉林大学学报(工学版), 2006, 36(01): 42-0045.
[13] HE Shu, MA Yu-kuan, YANG Jian-bo. Acoustic emission characteristics of various defects in metallic materials [J]. 吉林大学学报(工学版), 2003, (4): 21-25.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!