Journal of Jilin University(Engineering and Technology Edition) ›› 2021, Vol. 51 ›› Issue (5): 1798-1807.doi: 10.13229/j.cnki.jdxbgxb20200545

Previous Articles    

ET0 simulation of self⁃constructed improved whale optimized BP neural network

Yin-di YAO(),Jun-jin HE,Yang-li LI,Dang-yuan XIE,Ying LI   

  1. College of Communication and Information Eingineering,Xi'an University of Posts and Telecommunications,Xi'an 710121,China
  • Received:2020-07-23 Online:2021-09-01 Published:2021-09-16

Abstract:

Reference evapotranspiration (ET0) is a key factor affecting modern hydrological research, and is one of the core variables to be controlled in the process of crop transpiration. An improved genetic whale optimization algorithm (GWOA) and ET0model of BP neural network were established. The traditional whale optimization algorithm was replaced by the selection mechanism and adaptive mutation factor in genetic algorithm, The results show that the optimal search agent selection of WOA optimizes the population diversity and the ability to jump out of the local optimum of the whale algorithm, likewise significantly improves the fitting accuracy and convergence speed of the whale optimization algorithm by changing the convergence factor and weight factor of the whale algorithm. In the ET0 simulation of five stations in Northern Shaanxi Province, the basic meteorological data were input as elements, The calculation results of FAO P-M model were used as reference value, and the simulation results of GWOA-BP model were compared with those of other algorithm models. When there is only temperature data, GWOA-BP model can still reflect the nonlinear constraint relationship between meteorological factors and ET0 (average R2 is 0.990, average RMSE is 0.287 mm/d), which can completely replace the traditional model hargreavers model (R2 increased by 5% and RMSE decreased by 63%);The simulation data under different meteorological factors input show that the important meteorological factors of ET0 in Northern Shaanxi Province are Tmax、Tmin、n、RH and u2; the simulation data under the same meteorological factor input show that the fitting accuracy of GWOA-BP is higher than that of WOA-BP and BP models.

Key words: computer application, plant nutrition, reference evapotranspiration, whale optimization algorithm, Penman-Monteith model

CLC Number: 

  • TP391.9

Fig.1

BP neural network structure"

Table 1

Seven benchmark functions"

类型表达式WOAGWOA
F1i=1nx122.10e-0781.24e-309
F2i=1n|xi|+i=1n|xi|9.57e-0565.4e-089
F3max|xi|,1in65.46326.942
F4i=1nxi+0.520.903 20.330 6
F5i=1n-xisin|xi|-8 735-11 910
F6i=1nixi4+random0,10.002 370.000 10
F7i=1nxi2-10cos2πxi+101.13e-0131.13e-013

Fig.2

Optimal convergence curve of GWOA and WOA algorithms for function F1、F4、F5、F6 with same dimension"

Table 2

combination and fitting results of different input factors"

方案输入因子R2RMSE/(mm·d-1
神木洛川榆林延长定边神木洛川榆林延长定边
GWOA-BP1Tmin、Tmax0.8390.8590.8790.9080.8810.7701.2021.2710.9691.256
GWOA-BP2Tmin、Tmax、RH0.9400.9090.9260.9260.9130.4870.9580.9880.8711.132
GWOA-BP3Tmin、Tmax、u20.9090.8630.8980.9110.8980.6151.1921.1830.9521.111
GWOA-BP4Tmin、Tmax、n0.8910.9450.9430.9750.9470.6380.7470.8650.4940.815
GWOA-BP5Tmin、Tmax、RH、u20.9630.9130.9320.9260.9220.3770.9480.9510.8710.998
GWOA-BP6Tmin、Tmax、u2、n0.9480.9530.9570.9760.9590.4620.6870.7530.4860.708
GWOA-BP7Tmin、Tmax、n、RH0.9670.9700.9700.9810.9660.3880.5530.6310.4290.680
GWOA-BP8Tmin、Tmax、n、RH、u20.9770.9760.9780.9820.9750.2940.4910.5320.4230.549
GWOA-BP9Tmin、Tmax、Ra0.9990.9860.9900.9920.9860.0010.3850.3630.2800.406
HarTmin、Tmax、Ra0.9390.9400.9430.9460.9390.4820.7420.8890.8000.740

Fig.3

Comparison of fitting results of test samples"

Fig.4

Scatter plot of comparison between GWOA-BP8、WOA-BP8、BP8 model results and FAO P-M results during test period"

Table 3

Fitting accuracy of three algorithms"

评价指标GWOA-BPWOA-BPBP
R20.9830.9650.900
RMSE/(mm?d-10.2580.3720.629
1 许迪, 刘钰. 测定和估算田间作物腾发量方法研究综述[J]. 灌溉排水, 1997(4): 56-61.
Xu Di, Liu Yu. A review of methods for measuring and estimating evapotranspiration of field crops[J]. Irrigation and Drainage, 1997(4): 56-61.
2 Allen L H, Valle R R, Mishoe J W, et al. Soybean leaf gasexchange responses to carbon dioxide and water stress[J]. Agronomy Journal, 1994, 86(4): 625-636.
3 樊军, 王全九, 郝明德. 利用小蒸发皿观测资料确定参考作物蒸散量方法研究[J]. 农业工程学报, 2006, 22(7): 14-17.
Fan Jun, Wang Quan-jiu, Hao Ming-de. Study on the method of determining reference crop evapotranspiration using small evaporating dish observation data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2006, 22(7): 14-17.
4 Doorenbos J, Pruitt W O. Guidelines for predicting crop water requirements[J]. Irrigation & Drainage Paper, 1976, 24: 169-178.
5 彭世彰, 徐俊增. 参考作物蒸发蒸腾量计算方法的应用比较[J]. 灌溉排水学报, 2004, 23(6): 6-10.
Peng Shi-zhang, Xu Jun-zeng. Comparison of reference crop evapotranspiration calculation methods[J]. Journal of Irrigation and Drainage, 2004, 23(6): 6-10.
6 张寄阳, 孙景生, 段爱旺, 等. 风沙区参考作物需水量计算模式的研究[J]. 干旱地区农业研究, 2005, 23(2): 25-30.
Zhang Ji-yang, Sun Jing-sheng, Duan Ai-wang, et al. Study on calculation model of reference crop water requirement in windy and sandy area[J]. Agricultural Research in Arid Area, 2005, 23(2): 25-30.
7 Priestley C H B, Taylor R J. On the assessment of surface heat flux and evaporation using largescale parameters[J]. Monthly Weather Review, 2009, 100(2): 81-92.
8 战国隆. 参考作物蒸发蒸腾量简化计算与预测模型研究[D]. 咸阳: 西北农林科技大学农学院, 2010.
Zhang Guo-long. Study on simplified calculation and prediction model of reference crop evapotranspiration[D]. Xianyang: College of Agronomy, Northwest A&F University, 2010.
9 王升, 付智勇, 陈洪松, 等. 基于随机森林算法的参考作物蒸发蒸腾量模拟计算[J]. 农业机械学报, 2017, 48(3): 302-309.
Wang Sheng, Fu Zhi-yong, Chen Hong-song, et al. Simulation calculation of reference crop evapotranspiration based on stochastic forest algorithm[J]. Journal of Agricultural Machinery, 2017, 48(3): 302-309.
10 王升, 陈洪松, 聂云鹏, 等. 基于基因表达式编程算法的参考作物腾发量模拟计算[J]. 农业机械学报, 2015, 46(4): 106-112.
Wang Sheng, Chen Hong-song, Nie Yun-peng, et al.Simulation calculation of reference crop evapotranspiration based on gene expression programming algorithm[J]. Journal of Agricultural Machinery, 2015, 46(4): 106-112.
11 张学梅, 王自奎, 沈禹颖, 等. 基于临近台站气象数据的参考作物蒸散量估算方法[J]. 自然资源学报, 2019, 34(1): 179-190.
Zhang Xue-mei, Wang Zi-kui, Shen Yu-ying, et al. Estimation method of reference crop evapotranspiration based on meteorological data of neighboring stations[J]. Journal of Natural Resources, 2019, 34(1): 179-190.
12 冯禹, 崔宁博, 龚道枝, 等. 利用温度资料和广义回归神经网络模拟参考作物蒸散量[J]. 农业工程学报, 2016, 32(10): 81-89.
Feng Yu, Cui Ning-bo, Gong Dao-zhi, et al. Simulation of reference crop evapotranspiration using temperature data and generalized regression neural network[J]. Journal of Agricultural Engineering, 2016, 32(10): 81-89.
13 陈磊, 王江锋, 谷远利, 等. 基于思维进化优化的多源交通数据融合算法[J]. 吉林大学学报: 工学版, 2019, 49(3): 705-713.
Chen Lei, Wang Jiang-feng, Gu Yuan-li, et al. Multisource traffic data fusion algorithm based on evolutionary optimization of thought[J]. Journal of Jilin University(Engineering and Technology Edition),2019, 49(3): 705-713.
14 王坚浩, 张亮, 史超, 等. 基于混沌搜索策略的鲸鱼优化算法[J]. 控制与决策, 2019, 34(9): 1893-1900.
Wang Jian-hao, Zhang Liang, Shi Chao, et al. Whale optimization algorithm based on chaos search strategy[J]. Control and Decision, 2019, 34(9): 1893-1900.
15 李雄飞, 张海龙, 刘兆军, 等. 用启发式算法求解最短路径问题[J]. 吉林大学学报: 工学版, 2011, 41(1): 182-187.
Li Xiong-fei, Zhang Hai-long, Liu Zhao-jun, et al. Using heuristic algorithm to solve shortest path problem[J]. Journal of Jilin University(Engineering and Technology Edition), 2011, 41(1): 182-187.
16 葛继科, 邱玉辉, 吴春明, 等. 遗传算法研究综述[J].计算机应用研究, 2008, 25(10): 2911-2916.
Ge Ji-ke, Qiu Yu-hui, Wu Chun-ming, et al. Review of genetic algorithm research[J]. Computer Application Research, 2008, 25(10): 2911-2916.
17 冯文涛, 宋科康. 一种增强型鲸鱼优化算法[J].计算机仿真, 2020, 37(11): 275-279, 357.
Feng Wen-tao, Song Ke-kang. An enhanced whale optimization algorithm[J]. Computer Simulation, 2020, 37(11): 275-279, 357.
18 黄清宝, 李俊兴, 宋春宁, 等. 基于余弦控制因子和多项式变异的鲸鱼优化算法[J]. 控制与决策, 2020, 35(3): 559-568.
Huang Qing-bao, Li Jun-xing, Song Chun-ning, et al. Whale optimization algorithm based on cosine control factor and polynomial mutation[J]. Control and Decision, 2020, 35(3): 559-568.
19 纪广月. 基于改进的混沌鲸鱼算法优化DBN的广东人口数量预测研究[J]. 模糊系统与数学, 2020, 34(2): 164-174.
Ji Guang-yue. Study on population prediction of Guangdong province based on DBN optimized by improved chaotic whale algorithm[J]. Fuzzy System and Mathematics, 2020, 34(2): 164-174.
20 高林钢, 李同春, 林潮宁, 等. 基于改进鲸鱼优化算法的重力坝变形参数反演[J]. 水资源与水工程学报, 2020, 31(3): 193-199.
Gao Lin-gang, Li Tong-chun, Lin Chao-ning, et al. Deformation parameter inversion of gravity dam based on improved whale optimization algorithm[J]. Journal of Water Resources and Water Engineering, 2020, 31(3): 193-199.
21 张公凯, 陈才学, 郑拓. 改进鲸鱼算法在电动汽车有序充电中的应用[J]. 计算机工程与应用, 2021, 57(4): 272-278.
Zhang Gong-kai, Chen Cai-xue, Zheng Tuo. Application of improved whale algorithm in orderly charging of electric vehicles[J]. Computer Engineering and Applications, 2021, 57(4): 272-278.
22 贠保记, 白森珂, 张国. 基于混沌自适应粒子群算法的冷热电联供系统优化[J]. 电力系统保护与控制, 2020, 48(10): 123-130.
Hu Bao-ji, Bai Sen-ke, Zhang Guo. Optimization of cooling, heating and power system based on chaotic adaptive particle swarm optimization algorithm[J]. Power System Protection and Control, 2020, 48(10): 123-130.
23 武泽权, 牟永敏. 一种改进的鲸鱼优化算法[J]. 计算机应用研究, 2020, 37(12): 3618-3621.
Wu Ze-quan, Mu 木Yong-min. An improved whale optimization algorithm[J]. Application Research of Computers, 2020, 37(12): 3618-3621.
24 刘钰, 蔡林根. 参照腾发量的新定义及计算方法对比[J]. 水利学报, 1997(6): 28-34.
Liu Yu, Cai Lin-gen. Comparison of new definitions and calculation methods of reference evapotranspiration[J]. Journal of Water Conservancy, 1997(6): 28-34.
25 薛璐, 牛文全, 张子卓, 等. 简化参考作物蒸发蒸腾量公式在陕西关中地区的适用性研究[J]. 灌溉排水学报, 2015, 34(6): 62-67.
Xue Lu, Niu Wen-quan, Zhang Zi-zhuo, et al. Applicability of simplified reference crop evapotranspiration formula in Guanzhong area of Shanxi Province[J]. Journal of Irrigation and Drainage, 2015, 34(6): 62-67.
26 曹红霞, 粟晓玲, 康绍忠, 等. 陕西关中地区参考作物蒸发蒸腾量变化及原因[J]. 农业工程学报, 2007, 23(11): 8-16.
Cao Hong-xia, Su Xiao-ling, Kang Shao-zhong, et al. Changes and causes of reference crop evapotranspiration in Guanzhong area of Shanxi Province[J]. Journal of Agricultural Engineering, 2007, 23(11): 8-16.
27 韦振锋, 陈思源, 黄毅. 1981~2010年陕西潜在蒸散量时空特征及其对气候因子的响应[J]. 地理科学, 2015, 35(8): 1033-1041.
Wei Zhen-feng, Chen Si-yuan, Huang Yi. Temporal and spatial characteristics of potential evapotranspiration and its response to climate factors in Shaanxi Province from 1981 to 2010[J]. Geosciences, 2015, 35(8): 1033-1041.
[1] Jie CAO,Xue QU,Xiao-xu LI. Few⁃shot image classification method based on sliding feature vectors [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1785-1791.
[2] Chun-bo WANG,Xiao-qiang DI. Cloud storage integrity verification audit scheme based on label classification [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(4): 1364-1369.
[3] Dan-tong OUYANG,Yang LIU,Jie LIU. Fault diagnosis method based on test set under fault response guidance [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 1017-1025.
[4] Rong QIAN,Ru ZHANG,Ke-jun ZHANG,Xin JIN,Shi-liang GE,Sheng JIANG. Capsule graph neural network based on global and local features fusion [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 1048-1054.
[5] Xiao-long ZHU,Zhong XIE. Geospatial data extraction algorithm based on machine learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 1011-1016.
[6] Bao-feng SUN,Xin-xin REN,Zai-si ZHENG,Guo-yi Li. Multi⁃objective flow shop optimal scheduling considering worker's load [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 900-909.
[7] Shu-min WANG,Wei CHEN. Algorithm for identifying abnormal behavior in underground mines based on continuous density hidden Markov model [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 1067-1072.
[8] Yuan-ning LIU,Di WU,Xiao-dong ZHU,Qi-xian ZHANG,Shuang-shuang LI,Shu-jun GUO,Chao WANG. User interface components detection algorithm based on improved YOLOv3 [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 1026-1033.
[9] Guang-qiu CHEN,Yu-cun CHEN,Jia-yue LI,Guang-wen LIU. Infrared and visible image fusion based on discrete nonseparable shearlet transform and convolutional sparse representation [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 996-1010.
[10] Shu-tao SHEN,Zha-xi NIMA. Double chaos identifiable tampering image encryption method based on blockchain technology [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 1055-1059.
[11] Bing-hai ZHOU,Zhao-xu HE. Static semi⁃kitting strategy⁃based multi⁃objective just⁃in⁃time material distribution scheduling [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 910-916.
[12] Tian-qi GU,Chen-jie HU,Yi TU,Shu-wen LIN. Robust reconstruction method based on moving least squares algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 685-691.
[13] Qian-yi XU,Gui-he QIN,Ming-hui SUN,Cheng-xun MENG. Classification of drivers' head status based on improved ResNeSt [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 704-711.
[14] Bing-hai ZHOU,Qiong WU. Balancing and bi⁃objective optimization of robotic assemble lines [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 720-727.
[15] Xiao-hui WEI,Chang-bao ZHOU,Xiao-xian SHEN,Yuan-yuan LIU,Qun-chao TONG. Accelerating CALYPSO structure prediction with machine learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 667-676.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!