Journal of Jilin University(Engineering and Technology Edition) ›› 2021, Vol. 51 ›› Issue (3): 996-1010.doi: 10.13229/j.cnki.jdxbgxb20200166
Previous Articles Next Articles
Guang-qiu CHEN1(),Yu-cun CHEN1,Jia-yue LI1,2,Guang-wen LIU1
CLC Number:
1 | Lee M W, Kwak K C. Performance comparison of infrared and visible image fusion approaches[C]∥International Conference on Control, Artificial Intelligence, Robotics & Optimization (ICCAIRO), Prague, Czech Republic,2017:274-277. |
2 | Ma J, Ma Y, Li C. Infrared and visible image fusion methods and applications: a survey[J]. Information Fusion, 2019,45:153-178. |
3 | 刘斌,辛迦楠, 谌文江,等. 不可分拉普拉斯金字塔构造及其在多光谱图像融合中的应用[J]. 计算机应用, 2019,39(2):564-570. |
Liu Bin, Xin Jia-nan, Chen Wen-jiang, et al. Construction of non-separable Laplacian pyramid and its application in multi-spectral image fusion[J]. Journal of Computer Applications, 2019, 39(2):564-570. | |
4 | 李雄飞,宋璐,张小利. 基于协同经验小波变换的遥感图像融合[J]. 吉林大学学报:工学版,2019,49(4):1307-1319. |
Li Xiong-fei, Song Lu, Zhang Xiao-li. Remote sensing image fusion based on cooperative empirical wavelet transform [J]. Journal of Jilin University (Engineering and Technology Edition),2019,49(4):1307-1319. | |
5 | 郭全民,王言,李翰山. 改进IHS-Curvelet变换融合可见光与红外图像抗晕光方法[J]. 红外与激光工程,2018,47(11):1126002. |
Guo Quan-min, Wang Yan, Li Han-shan. Anti-halation method of visible and infrared image fusion based on Improved IHS-Curvelet transform[J]. Infrared and Laser Engineering, 2018,47(11):1126002. | |
6 | 刘哲,徐涛,宋余庆,等. 基于NSCT变换和相似信息鲁棒主成分分析模型的图像融合技术[J]. 吉林大学学报:工学版, 2018,48(5):1614-1620. |
Liu Zhe, Xu Tao, Song Yu-qing, et al. Image fusion technology based on NSCT and robust principal component analysis model with similar information[J]. Journal of Jilin University (Engineering and Technology Edition), 2018,48(5):1614-1620. | |
7 | Sun Z, Hu H. Off-line fusion of intravascular ultrasound and optical coherence tomography images[J]. Journal of Medical Imaging and Health Informatics,2017,7(7):1531-1538. |
8 | Li S, Kang X, Fang L, et al. Pixel-level image fusion: a survey of the state of the art[J]. Information Fusion, 2016, 33:100-112. |
9 | Kutyniok G, Lim W Q, Reisenhofer R. ShearLab 3D: faithful digital shearlet transforms based on compactly supported shearlets[J]. ACM Transactions on Mathematical Software, 2016,42(1):No.5. |
10 | 邱泽敏. 结合区域与边缘特征的红外与可见光图像融合算法[J]. 红外技术, 2018,40(5):53-58. |
Qiu Ze-min. Infrared and visible image fusion algorithm combined with regional characteristics and edge characteristics[J]. Infrared Technology, 2018, 40(5):53-58. | |
11 | Jin X, Jiang Q, Yao S, et al. A survey of infrared and visual image fusion methods[J]. Infrared Physics & Technology, 2017, 85:478-501. |
12 | Liu Y, Chen X, Wang Z, et al. Deep learning for pixel-level image fusion: Recent advances and future prospects[J]. Information Fusion, 2018, 42:158-173. |
13 | Zhang Qiang,Liu Yi, Blum R S, et al. Sparse representation based multi-sensor image fusion for multi-focus and multi-modality images: a review[J]. Information Fusion,2018,40:50-75. |
14 | Liu Y, Chen X, Ward R, et al. Image fusion with convolutional sparse representation[J]. IEEE Signal Processing Letters, 2016, 23(12):1882-1886. |
15 | Wohlberg B. Efficient algorithms for convolutional sparse representations[J]. IEEE Transactions on Image Processing, 2016, 25(1):301-315. |
16 | Xydeas C, Petrovic V. Objective image fusion performance measure[J]. Electronics Letters, 2000,36(4):308-309. |
17 | Ma K, Zeng K, Wang Z. Perceptual quality assessment for multi-exposure image fusion[J]. IEEE Transactions on Image Processing, 2015, 24(11):3345-3356. |
18 | Aslantas V, Bendes E. A new image quality metric for image fusion: The sum of the correlations of differences[J]. AEU-International Journal of Electronics and Communications, 2015, 69(12):1890-1896. |
19 | Chen Y, Blum R S. A new automated quality assessment algorithm for image fusion[J]. Image and Vision Computing,2009,27(10):1421-1432. |
20 | Haghighat M, Razian M A. Fast-FMI: non-reference image fusion metric[C]∥2014 IEEE 8th International Conference on Application of Information and Communication Technologies (AICT), Astana, Kazakhstan,2014:1-3. |
21 | Zhao W, Lu H. Medical image fusion and denoising with alternating sequential filter and adaptive fractional order total variation[J]. IEEE Transactions on Instrumentation and Measurement, 2017, 66(9):2283-2294. |
22 | Zhao J, Feng H, Xu Z, et al. Detail enhanced multi-source fusion using visual weight map extraction based on multi scale edge preserving decomposition[J]. Optics Communications, 2013, 287:45-52. |
23 | Zhu Jin, Jin Wei-qi, Li Li, et al. Fusion of the low-light-level visible and infrared images for night-vision context enhancement[J]. Chinese Optics Letters, 2018, 16(1):013501. |
24 | Du J, Li W, Xiao B. Anatomical-functional image fusion by information of interest in local laplacian filtering domain[J]. IEEE Transactions on Image Processing, 2017, 26(12):5855-5866. |
25 | Hu J, Li S. The multiscale directional bilateral filter and its application to multisensor image fusion[J]. Information Fusion, 2012,13(3):196-206. |
26 | da Cunha A L, Zhou J, Do M N. The nonsubsampled contourlet transform: theory, design, and applications[J]. IEEE Transactions on Image Processing, 2006, 15(10):3089-3101. |
27 | Li S, Yang B, Hu J. Performance comparison of different multi-resolution transforms for image fusion[J]. Information Fusion, 2011, 12(2):74-84. |
28 | Li H, Liu L, Huang W, et al. An improved fusion algorithm for infrared and visible images based on multi-scale transform[J]. Infrared Physics & Technology, 2016,74:28-37. |
29 | 杨风暴, 赵艳霞, 吉琳娜,等. 基于局部能量匹配的红外偏振图像融合[J]. 红外技术, 2016(4):319-324. |
Yang Feng-bao, Zhao Yan-xia, Ji Lin-na, et al. An infrared polarization image fusion method based on local energy matching[J]. Infrared Technology, 2016(4): 319-324. | |
30 | Qu Xiao-bo, Yan Jing-wen, Xiao Hong-zhi,et al. Image fusion algorithm based on spatial frequency-motivated pulse coupled neural networks in nonsubsampled contourlet transform domain[J]. Acta Automatica Sinica, 2008, 34(12):1508-1514. |
31 | Ma J, Zhou Z, Wang B, et al. Infrared and visible image fusion based on visual saliency map and weighted least square optimization[J]. Infrared Physics & Technology, 2017, 82:8-17. |
32 | Jin Xin, Jiang Qian, Yao Shao-wen, et al. Infrared and visual image fusion method based on discrete cosine transform and local spatial frequency in discrete stationary wavelet transform domain[J]. Infrared Physics & Technology, 2018,88:1-12. |
33 | Liu Y, Liu S, Wang Z. A general framework for image fusion based on multi-scale transform and sparse representation [J]. Information Fusion, 2015, 24:147-164. |
34 | Liu C H, Qi Y, Ding W R. Infrared and visible image fusion method based on saliency detection in sparse domain[J]. Infrared Physics & Technology, 2017,83:94-102. |
35 | Liu Y, Wang Z. Simultaneous image fusion and denoising with adaptive sparse representation[J]. IET Image Processing, 2015, 9(5):347-357. |
36 | Zhan Kun, Xie Yuan-ge, Wang Hai-bo, et al. Fast filtering image fusion[J]. Journal of Electronic Imaging, 2017,26(6):063004. |
37 | Li Wen, Xie Yuan-ge Y.. Zhou Hao-le,et al. Structure-aware image fusion[J]. Optik, 2018, 172:1-11. |
38 | Ma J, Chen C, Li C, et al. Infrared and visible image fusion via gradient transfer and total variation minimization[J]. Information Fusion, 2016, 31:100-109. |
39 | Zhou Z, Wang B, Li S, et al. Perceptual fusion of infrared and visible images through a hybrid multi-scale decomposition with Gaussian and bilateral filters[J]. Information Fusion, 2016,30:15-26. |
40 | Li H, Wu X J, Durrani T S. Infrared and visible image fusion with ResNet and zero-phase component analysis[J]. Infrared Physics & Technology, 2019,102:103039. |
[1] | Shu-min WANG,Wei CHEN. Algorithm for identifying abnormal behavior in underground mines based on continuous density hidden Markov model [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 1067-1072. |
[2] | Yuan-ning LIU,Di WU,Xiao-dong ZHU,Qi-xian ZHANG,Shuang-shuang LI,Shu-jun GUO,Chao WANG. User interface components detection algorithm based on improved YOLOv3 [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 1026-1033. |
[3] | Xiao-long ZHU,Zhong XIE. Geospatial data extraction algorithm based on machine learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 1011-1016. |
[4] | Bao-feng SUN,Xin-xin REN,Zai-si ZHENG,Guo-yi Li. Multi⁃objective flow shop optimal scheduling considering worker's load [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 900-909. |
[5] | Dan-tong OUYANG,Yang LIU,Jie LIU. Fault diagnosis method based on test set under fault response guidance [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 1017-1025. |
[6] | Rong QIAN,Ru ZHANG,Ke-jun ZHANG,Xin JIN,Shi-liang GE,Sheng JIANG. Capsule graph neural network based on global and local features fusion [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 1048-1054. |
[7] | Shu-tao SHEN,Zha-xi NIMA. Double chaos identifiable tampering image encryption method based on blockchain technology [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 1055-1059. |
[8] | Bing-hai ZHOU,Zhao-xu HE. Static semi⁃kitting strategy⁃based multi⁃objective just⁃in⁃time material distribution scheduling [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 910-916. |
[9] | Tian-qi GU,Chen-jie HU,Yi TU,Shu-wen LIN. Robust reconstruction method based on moving least squares algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 685-691. |
[10] | Qian-yi XU,Gui-he QIN,Ming-hui SUN,Cheng-xun MENG. Classification of drivers' head status based on improved ResNeSt [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 704-711. |
[11] | Xiao-hui WEI,Chang-bao ZHOU,Xiao-xian SHEN,Yuan-yuan LIU,Qun-chao TONG. Accelerating CALYPSO structure prediction with machine learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 667-676. |
[12] | Bing-hai ZHOU,Qiong WU. Balancing and bi⁃objective optimization of robotic assemble lines [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 720-727. |
[13] | Ming FANG,Wen-qiang CHEN. Face micro-expression recognition based on ResNet with object mask [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1): 303-313. |
[14] | Yuan SONG,Dan-yuan ZHOU,Wen-chang SHI. Method to enhance security function of OpenStack Swift cloud storage system [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1): 314-322. |
[15] | Xiao-yu WANG,Xin-hao HU,Chang-lin HAN. Face pencil drawing algorithms based on generative adversarial network [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1): 285-292. |
|