Journal of Jilin University(Engineering and Technology Edition) ›› 2021, Vol. 51 ›› Issue (5): 1887-1896.doi: 10.13229/j.cnki.jdxbgxb20200568

Previous Articles    

Design of 4QJ⁃3 type pickup header of silage oat

Rong-qing LIANG1,2(),Bo ZHONG2,He-wei MENG1,3,Zhi-min SUN2,Za KAN1,3()   

  1. 1.College of Mechanical and Electronic Engineering,Shihezi University,Shihezi 832000,China
    2.Shandong Academy of Agricultural Machinery Sciences,Jinan 250100,China
    3.Key Laboratory of Northwest Agricultural Equipment,Ministry of Agriculture and Rural Affairs,Shihezi 832000,China
  • Received:2020-07-27 Online:2021-09-01 Published:2021-09-16
  • Contact: Za KAN E-mail:liangrongqing2008@163.com;kz-shz@163.com

Abstract:

Combined with the present status of silage demand in China and the problems of low mechanization level, poor adaptability and versatility, complicated operation process, high labor intensity as well as high cost in oat gathering, giving full consideration to the application of the silage oat collecting equipment and the status quo of its development, the 4QJ-3 silage oat collecting and cutting header was developed. At the same time, the core components such as the picking and conveying mechanism, the forced feeding mechanism and the structure of chopping and kneading were designed, and the field performance test was carried out. With the combination of the throwing blade of spiral protrusion and kneading board, the material can be kneaded and thrown effectively. The results of field trials showed that the prototype and its components work well. When the tractor's forward speed is 2.7~6.8 km/h, the missing piking rate of the prototype is 0.6%~1.1%, the material cutting length is 20~36 mm, the kneading rate is more than 93%, and the pure working hour productivity is 0.60~1.49 hm2/h. Though all the performance indexes are in good agreement with the design values, but there are still many problems in the prototype when the forward speed is high and the continuous operation time is too long. In the later stage, it is necessary to optimize and improve the machine and key parts, and conduct field test to improve the operation efficiency and reliability of the machine. The development of the prototype can lay a theoretical foundation for the research and development of other types of silage harvester.

Key words: agricultural mechanization engineering, oat, pick-up header, spring roller, gripping feeding, chopping and kneading

CLC Number: 

  • S225.8

Fig.1

Structural assembly of 4QJ-3 type pickup header of silage oat"

Table 1

Main technical parameters of 4QJ-3 type pickup header of silage oat"

项目数值
配套动力/kW≥100
作业幅宽/mm2200
纯工作时间生产率/(hm2·h-10.5~1.2
工作状态外形尺寸/(m×m×m)6.3×2.64×4.85
切断长度/mm5~50
漏捡率/%≤1
揉搓率/%≥93
喂入量/(kg·s-13
结构质量/kg1650

Fig.2

Structure of pickup conveyer"

Fig.3

Motion analysis diagram of spring-finger cylinder pickup device"

Fig.4

Forced gripping and feeding device"

Fig.5

Structure diagram of cutting and rubbing device"

Table 2

Theoretical cutting length of material"

vwk
234612
38.125.419.112.76.4
50.733.825.416.98.5
67.244.833.622.411.2

Fig.6

Structure diagram of throwing device"

Fig.7

Prototype and field test"

Table 3

Actual average cutting length of oats"

vwk
234612
37.525.719.516.38.7
50.534.225.817.99.6
67.545.331.622.413.9
1 张越, 王小芬, 代佳丽, 等. 低温燕麦青贮乳酸菌复合菌系的构建及其青贮效果[J]. 农业工程学报, 2019, 35(14): 308-314.
Zhang Yue, Wang Xiao-fen, Dai Jia-li, et al. Construction and effect of lactic acid bacteria in oat silage and mechanism at low temperature[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(14): 308-314.
2 Brinton M M, Hansen B H, Ulmer K M, et al. Forage production and calf gains when grazing oats following corn harvest[J]. Translational Animal Science, 2019, 3: 1641-1645.
3 李志强, 冯富. 燕麦青贮研究进展[J]. 西南民族大学学报: 自然科学版, 2018, 44(1): 1-5.
Li Zhi-qiang, Feng Fu. Research progress of oat silage[J]. Journal of Southwest Minzu University(Natural Science Edition), 2018, 44(1): 1-5.
4 Rezende A, Freitas G P, Costa M, et al. Nutritional Composition of White Oat(Avena Sativa L.) with Different Levels of Dry Matter for Use in the Diet of Horses[M].Wageningen: Wageningen Academic Publishers, 2012.
5 Andrés B M V, Felipe L G, Gertrudis E, et al. Oat silage for grazing dairy cows in small-scale dairy systems in the highlands of central Mexico[J]. African Journal of Range and Forage Science, 2018, 35(1): 63-70.
6 Shinners K J, Boettcher G C, Muck R E, et al. Harvest and storage of two perennial grasses as biomass feedstocks[J]. Transactions of the Asabe, 2010, 53(2): 359-370.
7 Odogherty M J. A review of research on forage chopping[J]. Journal of Agricultural Engineering Research, 1982, 27(4): 267-289.
8 Siahsar B, Taleei A, Peyghambari A, et al. QTL analysis of forage quantity and quality-related traits of barley[J]. Journal of Crop Production and Processing Isfahan University of Technology, 2009, 13(47): 195-208.
9 Blevins F Z, Hansen H J. Analysis of forage harvester design[J]. Agricultural Engineering, 1956, 37: 21-27, 29.
10 Johnson L M, Harrison J H, Hunt C W, et al. Nutritive value of corn silage as affected by maturity and mechanical processing: a contemporary review[J]. Journal of Dairy Science, 1999, 82(12): 2813-2825.
11 Zhang M, Sword M L, Buckmaster D R, et al. Design and evaluation of a corn silage harvester using shredding and flail cutting[J]. Transactions of the Asabe, 2003, 46(6): 1503-1511.
12 Amiama C, Bueno J, Alvarez C J, et al. Design and field test of an automatic data acquisition system in a self-propelled forage harvester[J]. Computers and Electronics in Agriculture, 2008, 61(2): 192-200.
13 Cerdeira-Pena A, Carpente L, Amiama C. Optimised forage harvester routes as solutions to a traveling salesman problem with clusters and time windows[J]. Biosystems Engineering, 2017, 164: 110-123.
14 Reyns P, Missotten B, Ramon H, et al. A review of combine sensors for precision farming[J]. Precision Agriculture, 2002, 3(2): 169-182.
15 Mathanker S K, Hansen A C. Harvesting system design and performance[J]. Engineering and Science of Biomass Feedstock Production and Provision, 2014(1): 85-139.
16 Bortolini M, Cascini A, Gamberi M, et al. Sustainable design and life cycle assessment of an innovative multi-functional haymaking agricultural machinery[J]. Journal of Cleaner Production, 2014, 82(1): 23-36.
17 万霖, 车刚, 汪春, 等. 4QZR-30型青贮饲料收获机设计与试验[J]. 农业机械学报, 2008, 39(3): 187-190.
Wan Lin, Che Gang, Wang Chun, et al. Design and test of 4QZR-30 silage harvester[J]. Transactions of the Chinese Society for Agricultural Machinery, 2008, 39(3): 187-190.
18 丛宏斌, 李明利, 李汝莘, 等. 4YQK-2型茎秆青贮打捆玉米收获机的设计[J]. 农业工程学报, 2009, 25(10): 96-100.
Cong Hong-bin, Li Ming-li, Li Ru-xin, et al. Design of 4YQK-2 combine harvester for corn and straw ensilage[J]. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(10): 96-100.
19 赵满全, 黄炎. 黄贮饲料收获机关键部件设计与性能试验[J]. 农业机械学报, 2013, 44(): 91-95.
Zhao Man-quan, Huang Yan. Structure simulation and performance experiment of yellow corn forage harvester[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(Sup.2): 91-95.
20 王进华, 王泽群, 贾晶霞, 等. 饲料收获机矮秆割台拨禾轮导轨运动轨迹研究[J]. 农业机械学报, 2011, 42(): 152-155.
Wang Jin-hua, Wang Ze-qun, Jia Jing-xia, et al. Guide rail trajectory of mower table reel device for silage harvester[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(Sup.1): 152-155.
21 郁志宏, 王文明, 莫日根毕力格, 等. 弹齿滚筒式捡拾器捡拾性能试验[J]. 农业机械学报, 2017, 48(3): 106-112.
Yu Zhi-hong, Wang Wen-ming, Morigenbilige, et al. Experiment on performance of spring-finger cylinder pickup collector[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(3): 106-112.
22 王文明, 王春光. 弹齿滚筒式捡拾装置参数分析与仿真[J]. 农业机械学报, 2012, 43(10): 82-88.
Wang Wen-ming, Wang Chun-guang. Parameter analysis and simulation of spring-finger cylinder pickup collector[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(10): 82-88.
23 王国权, 余群, 卜云龙, 等. 秸秆捡拾打捆机设计及捡拾器的动力学仿真[J]. 农业机械学报, 2001, 32(5): 59-61, 68.
Wang Guo-quan, Yu Qun, Bu Yun-Long, et al. Design of pickup baler and dynamic simulation of pickup roller[J]. Transactions of the Chinese Society for Agricultural Machinery, 2001, 32(5): 59-61, 68.
24 Langer T H, Ebbesen M K, Kordestani A. Experimental analysis of occupational whole-body vibration exposure of agricultural tractor with large square baler[J]. International Journal of Industrial Ergonomics, 2015, 47: 79-83.
25 Cundiff J S, Marsh L S. Harvest and storage costs for bales of switchgrass in the southeastern United States[J]. Bioresource Technology, 1996, 56(1): 95-101.
26 盛凯, 曾南宏. 弹齿滚筒捡拾器的机构特性及其运动数学模型[J]. 农业机械学报, 1991, 22(1): 51-57.
Sheng Kai, Zeng Nan-hong. Mechanism characteristics and movement mathematical model of the spring-toothed roller picker[J]. Transactions of the Chinese Society for Agricultural Machinery, 1991, 22(1): 51-57.
27 卡那沃依斯基. 收获机械[M]. 北京: 中国农业机械出版社, 1983.
28 车刚, 万霖, 张伟, 等. 青贮饲料收获机实体设计与试验[J]. 农业机械学报, 2010, 41(2): 82-86.
Che Gang, Wan Lin, Zhang Wei, et al. Solid design and experiment of forage harvester[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(2): 82-86.
29 周德义, 王子佳, 张丹丹, 等. 新型玉米收获机的秸秆处理装置[J]. 吉林大学学报: 工学版, 2012, 42(): 113-116.
Zhou De-yi, Wang Zi-jia, Zhang Dan-dan, et al. The new device of stalk cutting with in corn narvester[J]. Journal of Jilin University(Engineering and Technology Edition), 2012, 42(Sup.1): 113-116.
30 Weiss W P, Wyatt D J. Effect of oil content and kernel processing of corn silage on digestibility and milk production by dairy cows[J]. Journal of Dairy Science, 2000, 83(2): 351-358.
31 Bhandari S K, Li S, Ominski K H, et al. Effects of the chop lengths of alfalfa silage and oat silage on feed intake, milk production, feeding behavior, and rumen fermentation of dairy cows[J]. Journal of Dairy Science, 2008, 91(5): 1942-1958.
32 薛钊, 付君, 陈志, 等. 青饲玉米收获机械切碎装置参数优化试验[J]. 吉林大学学报: 工学版, 2020, 50(2): 739-748.
Xue Zhao, Fu Jun, Chen Zhi, et al. Optimization experiment on parameters of chopping device of forage maize harvester[J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 739-748.
33 邱进, 吴明亮, 官春云, 等. 动定刀同轴水稻秸秆切碎还田装置结构设计与试验[J]. 农业工程学报, 2015(10): 10-19.
Qiu Jin, Wu Ming-liang, Guan Chun-yun, et al. Design and experiment of chopping device with dynamic fixed knife coaxial for rice straw[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015(10): 10-19.
34 Siemens M C, Wilkins D E, Correa R F. Development and evaluation of a residue management wheel for hoe-type no-till drills[J].Transactions of the American Society of Agricultural Engineers, 2004, 47(2): 397-404.
35 Kroes S, Harris H D. A kinematic model of the dual basecutter of a sugar cane harvester[J]. Journal of Agricultural Engineering Research, 1995, 62(3): 163-172.
36 梁荣庆, 张翠英, 李青江, 等. 4QG-2型青贮收获机切碎揉搓装置的设计[J]. 农机化研究, 2018, 40(11): 99-104.
Liang Rong-qing, Zhang Cui-ying, Li Qing-jiang, et al. Design of chopping and rubbing device of 4QG-2 silage harvester[J]. Journal of Agricultural Mechanization Research, 2018, 40(11): 99-104.
37 . 玉米青贮收获机作业质量[S].
38 . 牧草捡拾器[S].
[1] Ji-hai JIANG,Cun-ran ZHAO,Guan-long ZHANG,Ming-yang CHE. Tribological properties of coating materials of tribopairs for aviation kerosene piston pump [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1): 147-153.
[2] Zhi-gang YANG,Ya-jun FAN,Chao XIA,Shi-jun CHU,Xi-zhuang SHAN. Drag reduction of a square⁃back Ahmed model based on bi⁃stable wake [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1635-1644.
[3] Zhao XUE,Jun FU,Zhi CHEN,Feng-de WANG,Shao-ping HAN,Lu-quan REN. Optimization experiment on parameters of chopping device of forage maize harvester [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 739-748.
[4] Jun FU,Yi-chen ZHANG,Chao CHENG,Zhi CHEN,Xin-long TANG,Lu-quan REN. Design and experiment of bow tooth of rigid flexible coupling for wheat threshing [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 730-738.
[5] Chao CHENG,Jun FU,Fu-ping HAO,Zhi CHEN,De-yi ZHOU,Lu-quan REN. Effect of motion parameters of cleaning screen on corn cob blocking law [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 351-360.
[6] Chao CHENG,Jun FU,Xin⁃long TANG,Zhi CHEN,Lu⁃quan REN. Effects of vibration mode on interface adhesion law of rice threshed mixtures [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1228-1235.
[7] Wei⁃min ZHUANG,Peng⁃yue WANG,Dong⁃xuan XIE,Yan⁃hong CHEN. Scratch resistance of aluminum automotive coatings based on continuum damage mechanics [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 829-835.
[8] JIN Jing-fu, LI Yang, CHEN Ting-kun, CONG Qian, QI Ying-chun. Effect of elastic modulus of coating on ice-adhesion strength on substrate [J]. 吉林大学学报(工学版), 2017, 47(5): 1548-1553.
[9] SUN Wei, LI Jian, JIA Shi. Identification of nonlinear stiffness and damping for hard-coating composite structure [J]. 吉林大学学报(工学版), 2016, 46(4): 1156-1162.
[10] WANG Chun-yue, WANG Li-xue, ZHANG Jun-ru, SHI Wen-xiao. Simulating floating inductance based on MDDCC [J]. 吉林大学学报(工学版), 2016, 46(2): 652-657.
[11] FU Jun,QIAN Zhi-hui,YIN Wei,WANG Jia-jia,REN Lu-quan. Experimental study of friction and tensile properties of wheat [J]. 吉林大学学报(工学版), 2015, 45(2): 501-507.
[12] DAI Sheng, ZUO Dun-wen, LI Xiang-feng, CHENG Hu, FANG Zhi-gang, WANG Min, MIAO Hong. Friction and wear behavior of Ni-based WC composite coating on mould steel 2738 prepared by laser cladding [J]. , 2012, 42(04): 924-929.
[13] ZHUANG Wei-min, CHEN Yan-hong. Simulation of surface coating failure based on continuum damage mechanics [J]. , 2012, 42(04): 857-862.
[14] GUO Yun-wen, REN Lu-quan, LIU Xian-li, ZHANG Guang-cheng, ZHANG Zhi-hui. Abrasion properties of coupling surface of bionic concave pits and nano-sized SiC/Ni composite coatings [J]. 吉林大学学报(工学版), 2012, 42(01): 74-78.
[15] JIANG Gui-Yan, CHANG An-De, CONG Yu-Liang. Link average travel time of traffic flow estimation based on floating car data [J]. 吉林大学学报(工学版), 2010, 40(增刊): 158-0162.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!