Journal of Jilin University(Engineering and Technology Edition) ›› 2022, Vol. 52 ›› Issue (3): 604-614.doi: 10.13229/j.cnki.jdxbgxb20200825

Previous Articles    

Experiment on mechanical properties of detachable prefabricated composite beams subjected to negative bending moment

Jun CHEN1(),Shao-xian WANG1,Hui XU1,Duan-quan MO2,Jing-si HUO3,Xu-hua DENG1()   

  1. 1.College of Civil Engineering and Mechanics,Xiangtan University,Xiangtan 411105,China
    2.Hunan Hengyun Construction Technology Development Co. ,Ltd. ,Xiangtan 411101,China
    3.College of Civil Engineering,Huaqiao University,Xiamen 361021,China
  • Received:2020-10-29 Online:2022-03-01 Published:2022-03-08
  • Contact: Xu-hua DENG E-mail:chenjun0325@126.com;903074106@qq.com

Abstract:

Four detachable prefabricated composite beams are designed and their mechanical properties under the action of negative bending moment are studied by taking shear connection degree and debonding treatment as test parameters. The test results show that:①the shear coupling degree can improve the anti-cracking performance of the detachable composite beam under the action of negative bending moment, but it has little influence on its ultimate bearing capacity and stiffness. ②Partial debonding treatment of anti-shear joints can improve the mechanical properties of detachable composite beams under the action of negative bending moment, delay the development of cracks, and have little influence on the stiffness and ultimate bearing capacity of specimens. However, this treatment has a more obvious effect on the improvement of specimens with complete shear connections. ③Under the action of negative bending moment, the rotation capacity of the detachable composite beam still has a large room for improvement. Both the debonding treatment and the increase of shear connection degree can improve the rotation capacity of the composite beam, which can be further optimized.

Key words: building structure, composite structure, composite beams, negative bending moment, debonding treatment

CLC Number: 

  • TU398.9

Table 1

Specimen parameters"

试件编号预制板设计强度/MPa连接件个数连接件直径/mm是否脱黏处理连接件纵向间距/mm抗剪连接度预紧力/kN
PHBCB-UB-S4036161501.3825
PHBCB-B-S4036161501.3825
PHBCB-UB402616210125
PHBCB-B402616210125

Fig.1

Specimen size"

Fig.2

Local disbonding treatment"

Table 2

Mechanical propertie of steel materials"

钢材类型屈服强度/MPa极限强度/MPa
钢筋C6417.89742.89
钢筋C8377.50683.99
钢筋C10476.93612.81
钢筋C12535.22654.37
钢梁翼缘286.40419.90
钢梁腹板338.04458.01
连接件高强螺栓663.00835.00

Fig.3

Schematic diagram of loading device"

Fig.4

Loading field diagram"

Fig.5

Measuring point layout"

Table 3

Summary of tests"

试验状态PHBCB-UBPHBCB-BPHBCB-B-SPHBCB-UB-S
开裂状态P1/kN70607674
P2/kN1206090150
P3/kN18090120180
P1/Pu0.1530.1380.1660.164
P2/Pu0.2630.1380.1960.333
P3/Pu0.3940.2070.2620.400
S60/mm0.0100.0020.0020.005
ωlim状态PL/200/kN375.1360391.8385.6
PL/200/Pu0.8220.8270.8550.857
ωL/200/mm13.513.513.513.5
a360/mm0.771.230.820.71
S360/mm0.350.5730.4010.118
Pu/2状态Pu/2/kN228.2217.6229.3225.1
ω0.5Pu/mm5.2685.4584.4374.637
ω0.5Pu/L1/5131/4951/6101/580
a240/mm0.390.550.3870.387
S240/mm0.1930.3060.1380.054
承载力极限状态Pu/kN456.4435.3458.5450.1
ωPu/mm35.98243.3133.43636.409
ωPu/L1/751/621/811/76
a/mm11.1113.315.615
SPu/mm0.7990.8820.8120.271

Fig.6

Failure diagram of specimen"

Fig.7

Load-deflection diagram"

Fig.8

Cracks diagram of each specimen"

Fig.9

Load-slip curve"

Fig.10

Load - maximum beam end slip curve"

Fig.11

Moment - beam end rotation curve"

Table 4

Characteristic moment value"

试件型号Mcr/(kN?m)My/(kN?m)Mp/(kN?m)Mu/(kN?m)McrMy/MuMp/Mu
PHBCB-UB47.25243279308.0700.1530.7880.905
PHBCB-B40.5214.9875279293.8270.1370.7310.949
PHBCB-B-S51.3250.425279309.4870.1650.8090.901
PHBCB-UB-S49.95244.89279303.8170.1640.8060.918

Table 5

R value of rotation capacity"

试件型号θpθuR=θuθp-1
PHBCB-UB0.7521.8691.485
PHBCB-B0.9802.2271.272
PHBCB-B-S0.8252.1501.606
PHBCB-UB-S0.8152.1601.649

Table 6

Comparison of stiffness and deflection"

试件编号荷载/kN试验刚度/(1013?N?mm2计算刚度/(1013?N?mm2试验刚度/计算刚度实测挠度/mm

未修正

计算挠度/mm

挠度修正量/mm修正后计算挠度/mm修正前计算挠度∶实测挠度/%修正后计算挠度∶实测挠度/%
PHBCB-UB360.01.6342.040.8109.037.250.4807.7380.2885.63
PHBCB-B318.51.9522.040.9676.696.420.4276.8495.88102.27
PHBCB-B-S371.01.6362.020.8119.307.540.3947.9381.0785.31
PHBCB-UB-S362.81.8702.020.8277.957.370.3857.7692.6897.53
1 钟琼. 预制装配式钢-混凝土组合梁的试验研究[D]. 长沙:湖南大学建筑安全与节能教育部重点实验室, 2017.
Zhong Qiong. The experimental study on composite steel-prefabricated precast concrete slab beam[D]. Changsha: Key Laboratory of the Ministry of Building Safety and Energy Conservation, Hunan University, 2017.
2 钟琼, 霍静思, 王海涛, 等. 预制装配式组合梁栓钉连接件抗剪性能试验研究[J]. 建筑钢结构进展, 2018, 20(2): 13-19, 27.
Zhong Qiong, Huo Jing-si, Wang Hai-tao, et al. Experimental study on the shear bearing capacity of stud connectors in prefabricated compositebeams[J]. Progress in Steel Building Structures, 2018, 20(2): 13-19, 27.
3 刘中良. 装配式组合梁高强螺栓连接件抗剪性能试验研究[D]. 湘潭:湘潭大学土木工程与力学学院, 2017.
Liu Zhong-liang. Experimental study on the shear behavior of the prefabricated composite beam high strength bolt connector[D]. Xiangtan: College of Civil Engineering and Mechanics, Xiangtan University, 2017.
4 刘中良, 陈俊, 霍静思. 装配式组合梁高强螺栓连接件抗剪性能试验研究[J]. 建筑结构, 2017, 47(10): 65-70, 64.
Liu Zhong-liang, Chen Jun, Huo Jing-si. Experimental study on shear behavior of high strength bolt connection for prefabricated composite beam[J]. Building Structure, 2017, 47(10): 65-70, 64.
5 汪威. 装配式组合梁高强螺栓连接件力学性能研究[D]. 湘潭:湘潭大学土木工程与力学学院, 2019.
Wang Wei. Mechanical performance study on high-strength bolt connectors in prefabricated steel-concrete composite beams[D]. Xiangtan: College of Civil Engineering and Mechanics, Xiangtan University, 2019.
6 陈俊,汪威,丁发兴,等. 钢-混凝土组合梁高强螺栓抗剪连接件受剪性能[J]. 铁道科学与工程学报, 2019, 16(10): 2553-2561.
Chen Jun, Wang Wei, Ding Fa-xing, et al. Shear bearing capacity of high-strength bolt connectors in steel-concrete composite beams[J]. Journal of Railway Science and Engineering, 2019, 16(10): 2553-2561.
7 聂建国. 钢-混凝土组合梁结构[M]. 北京:科学出版社, 2005.
8 樊健生,聂建国,贾维,等. 钢-混凝土连续组合梁的设计方法[J]. 建筑结构, 2003, 33(1): 41-44.
Fan Jian-sheng, Nie Jian-guo, Jia Wei, et al. Design method of steel-concrete continuous composite beam[J]. Building Structure, 2003, 33(1): 41-44.
9 戴益民. 钢-混凝土预制板组合梁的试验研究[D].长沙:湖南大学土木工程学院, 2005.
Dai Yi-min. The experimental studies on composite steel-FDPCP beam[D]. Changsha: College of Civil Engineering, Hunan University, 2005.
10 刘寒冰,时成林,谭国金.考虑剪切滑移效应的叠合梁有限元解[J].吉林大学学报: 工学版, 2016, 46(3): 792-797.
Liu Han-bing, Shi Cheng-lin, Tan Guo-jin. Finite element solution of composite beams considering shear slip effect[J]. Journal of Jilin University (Engineering and Technology Edition), 2016, 46(3): 792-797.
11 刘寒冰, 刘天明, 张云龙. 钢-混凝土组合连续梁抗弯性能[J]. 吉林大学学报: 工学版, 2009, 39(6): 1486-1491.
Liu Han-bing, Liu Tian-ming, Zhang Yun-long. Flexural behavior of steel-concrete composite continuous beams[J]. Journal of Jilin University (Engineering and Technology Edition), 2009, 39(6): 1486-1491.
12 刘寒冰, 代艳杰, 韩硕, 等. 预应力钢-轻骨料混凝土组合梁抗弯承载力[J]. 吉林大学学报: 工学版, 2009, 39(): 138-140.
Liu Han-bing, Dai Yan-jie, Han Shuo. Flexural capacity of prestressed steel lightweight aggregate concrete composite beams [J]. Journal of Jilin University (Engineering and Technology Edition), 2009, 39(Sup.1): 138-140.
13 樊健生, 聂建国, 张彦玲. 钢-混凝土组合梁抗裂性能的试验研究[J]. 土木工程学报, 2011, 44(2): 1-7.
Fan Jian-sheng, Nie Jian-guo, Zhang Yan-ling. Experimental study of crack resistance of steel-concrete beams[J]. China Civil Engineering Journal, 2011, 44(2): 1-7.
14 樊健生,聂建国. 钢-混凝土组合桥梁研究及应用新进展[J]. 建筑钢结构进展, 2006, 8(5): 35-39.
Fan Jian-sheng, Nie Jian-guo. Progress in research and application of composite steel-concrete bridges[J]. Progress in Steel Building Structures, 2006, 8(5): 35-39.
15 聂建国, 樊健生. 组合梁在负弯矩作用下的刚度分析[J]. 工程力学, 2002, 19(4): 33-36, 28.
Nie Jian-guo, Fan Jian-sheng. Analysis of composite beam stiffness under negative bending[J]. Engineering Mechanics, 2002, 19(4): 33-36, 28.
16 胡少伟, 叶祥飞. 预应力连续组合梁负弯矩区抗弯承载力分析[J]. 工程力学, 2013, 30(11): 160-165.
Hu Shao-wei, Ye Xiang-fei. Analysis on the bending capacity of the negative-moment region in prestressed continuous composite beam[J]. Engineering Mechanics, 2013, 30(11): 160-165.
17 聂建国, 陶慕轩, 聂鑫, 等. 抗拔不抗剪连接新技术及其应用[J]. 土木工程学报, 2015, 48(4): 7-14, 58.
Nie Jian-guo, Tao Mu-xuan, Nie Xin, et al. New technique and application of uplift-restricted and slip-permitted connection[J]. China Civil Engineering Journal, 2015, 48(4): 7-14, 58.
18 聂建国, 李一昕, 陶慕轩. 新型抗拔不抗剪连接件的滑移性能及其滞回模型[J]. 工程力学, 2014, 31(11): 46-52.
Nie Jian-guo, Li Yi-xin, Tao Mu-xuan. Slip performance and hysteresis model of a new type of uplift restricted-slipfree connectors[J]. Engineering Mechanics, 2014, 31(11): 46-52.
19 庄亮东, 陈伟, 聂鑫, 等. 抗拔不抗剪连接件在钢-混凝土组合框架结构中的应用[J]. 建筑结构学报, 2020, 41(1): 104-112.
Zhuang Liang-dong, Chen Wei, Nie Xin, et al. Application of uplift-restricted and slip-permitted connectorsin steel-concrete composite frame structures[J]. Journal of Building Structures, 2020, 41(1): 104-112.
20 John O D, George S. Composite beams with limited-slip-capacity shear connectors[J]. Journal of Structural Engineering, 1995, 121(6): 932-938.
21 Nie J G, Li Y X, Tao M X, et al. Uplift-restricted and slip-permitted t-shape connectors[J]. Journal of Bridge Engineering, 2015, 20(4): No.04014073.
22 Duan Lin-li. Research on application of uplift-restricted slip-permitted (URSP) connectors in steel-concrete composite frames[J]. Applied Science, 2019, 9(11): 2235.
23 . 混凝土结构设计规范 [S].
24 . 钢结构设计设计标准 [S].
25 . 金属材料拉伸试验第1部分:室温试验方法 [S].
26 陈超. 预制装配式组合梁及可拆卸预制装配式组合梁性能研究[D]. 湘潭:湘潭大学土木工程与力学学院, 2020.
Chen Chao. Study on the performance of prefabricated composite beams and detchable prefabricated composite beams[D]. Xiangtan: College of Civil Engineering and Mechanics,Xiangtan University, 2020.
27 贾远林,陈世鸣. 预应力组合梁负弯矩作用下梁端转动能力研究[J]. 河北工程大学学报: 自然科学版, 2009, 26(1): 14-20.
Jia Yuan-lin, Chen Shi-ming. Buckling coefficient of steel-concrete composite beams in negative bending[J]. Journal of Hebei University of Engineering(Natural Science Edition), 2009, 26(1): 14-20.
[1] Shi⁃cheng WAN,Qiao HUANG,Jian GUAN,Zhao⁃yuan GUO. Strengthening of continuous steel⁃concrete composite beams in negative moment region using prestressed carbon fiber⁃reinforced polymer plates [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1114-1123.
[2] SUN Wei, LI Jian, JIA Shi. Identification of nonlinear stiffness and damping for hard-coating composite structure [J]. 吉林大学学报(工学版), 2016, 46(4): 1156-1162.
[3] WU Jian-ying1,2, CAI Jian1,2, HE Jun1, CHEN Qing-jun1,2 . Load capacity and stiffness of beamcolumn joint strengthened by plate rings with irregularly arranged double level beams [J]. 吉林大学学报(工学版), 2008, 38(04): 829-834.
[4] Shi Qi-yin,Lu Ming,Zhang Qing-zong,Li Ai-qun,Hui Zhuo . Bending fatigue behavior of RC crane beam strengthened with carbon fiber reinforced plastic [J]. 吉林大学学报(工学版), 2008, 38(01): 99-104.
[5] JIN Zhai-nan, JU Yan-zhong, QIN Li, YANG Xiang-jiang, CHEN Jian-hua. Experimental Investigations on Dynamic Modification of Multistory Shear Wall Structure [J]. 吉林大学学报(工学版), 2000, (3): 83-86.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!