Journal of Jilin University(Engineering and Technology Edition) ›› 2019, Vol. 49 ›› Issue (4): 1114-1123.doi: 10.13229/j.cnki.jdxbgxb20180432

Previous Articles    

Strengthening of continuous steel⁃concrete composite beams in negative moment region using prestressed carbon fiber⁃reinforced polymer plates

Shi⁃cheng WAN1(),Qiao HUANG1(),Jian GUAN1,Zhao⁃yuan GUO2   

  1. 1. School of Transportation,Southeast University,Nanjing 211189,China
    2. Jiangsu Provincial Transportation Engineering Construction Bureau,Nanjing 210004,China
  • Received:2018-05-04 Online:2019-07-01 Published:2019-07-16
  • Contact: Qiao HUANG E-mail:wan_shi_cheng@163.com;qhuanghit@126.com

Abstract:

To investigate the flexural behavior of continuous steel-concrete composite beams strengthened with prestressed carbon fiber-reinforced polymer (CFRP) plates in negative moment region, three 6.2 m two-span continuous beams were tested to failure. The specimens included two strengthened beams and one unstrengthened control beam, which had steel box-concrete composite section. The CFRP plates were prestressed to 20% and 35% of the tensile strength respectively by an innovative fabricated anchorage system and installed over the top surface of the concrete slabs. Experimental results show that the ultimate flexural capacity of the central support sections increased 19.4% and 28.5% respectively by the use of prestressed CFRP plates. The crack resistance in the negative moment region was enhanced significantly. The strengthening contributes to the decrease of the mid-span deflection and crack width under service condition, while improving the ultimate deformation at failure stage. The strain distribution along the cross-section conforms to plane-section assumption. The calculation method of the ultimate flexural capacity for central support section is proposed. Good agreement between experimental and theoretical results is achieved.

Key words: bridge engineering, flexural behavior, prestressed carbon fiber?reinforced polymer(CFRP) plate, composite structure, negative moment region, crack resistance, secondary load

CLC Number: 

  • U445.7

Fig.1

Load setup and specimen geometry"

Table 1

Strengthening parameters of test specimens"

试件编号 加固方式 碳纤维板规格 实测初始裂缝/mm

预应力

水平/%

张拉力/kN 有效预应力/MPa 锚固方式
宽度/mm 厚度/mm
USC?1 不加固 - - - - - - -
RSC?1 预应力加固 50 3 0.20 20 72 502 端部锚具+树脂粘结
RSC?2 预应力加固 50 3 0.21 35 126 864 端部锚具+树脂粘结

Fig.2

Fabricated anchorage system of prestressed CFRP plate"

Fig.3

Strengthening of continuous composite beam in negative moment region"

Table 2

Material properties"

试验材料 型号

屈服/抗压/抗拉

强度/MPa

弹性模量

/MPa

钢梁 Q235 283 2.05×105
混凝土板 C40 51.2 3.28×104
向钢筋 HPB300 351 2.11×105
碳纤维板 WSB?TB 2450 1.62×105
环氧结构胶 WSB?QT 40.3 2.60×103

Fig.4

Locations of strain gauges on composite section"

Fig.5

Distribution of cracks in negative moment region"

Fig.6

Failure of continous beam at mid?span section"

Fig.7

Failure of continous beam at central support section"

Table 3

Main test results"

试件编号

碳纤维板

初始应变/με

屈服荷载/kN

极限荷载

/kN

最大裂缝

宽度/mm

最大跨中

挠度/mm

碳纤维板

应变增量/με

碳纤维板

应变总量/με

跨中截面 中支点截面
USC?1 - 303.6 351.3 480.8 3.01 22.98 - -
RSC?1 3101 326.6 428.1 523.2 1.75 20.06 3353 6454
RSC?2 5336 351.3 434.1 560.0 0.92 27.40 3829 9165

Table 4

Ultimate flexural property and moment redistribution"

试件编号 极限状态支座反力/kN 抗弯极限承载力/(kN·m) 承载力提高系数/% 弯矩调幅系数/%
中支座 边支座 中支点截面 跨中截面 中支点截面 跨中截面 中支点截面 跨中截面
USC?1 586.0 187.8 157.8 281.7 41.7 -25.0
RSC?1 648.8 198.8 188.4 298.2 19.4 5.9 36.0 -21.6
RSC?2 695.2 212.4 202.8 318.6 28.5 13.1 35.6 -21.4

Fig.8

Load versus deflection at mid?span section"

Fig.9

Load versus crack width at central support section"

Table 5

Cracking load and crack width"

试件编号

开裂荷载

/kN

开裂荷载

提高系数/%

65%极限

荷载/kN

65%极限荷载下

裂缝宽度/mm

裂缝宽度

减小系数/%

极限荷载

/kN

极限荷载下

裂缝宽度/mm

极限荷载下裂缝宽度减小系数/%
USC?1 26.7 - 312.5 0.62 - 480.8 3.01 -
RSC?1 100.7 277 340.1 0.44 29.0 523.2 1.75 41.9
RSC?2 161.6 505 364.0 0.17 72.6 560.0 0.92 69.4

Fig.10

Load versus strain of CFRP plate"

Fig.11

Strain distribution of strengthened specimens"

Fig.12

"

Table 6

Parameter determination of ultimate flexural capacity"

参 数 取 值 参 数 取 值
ε f /10-6 6454 b s l /mm 200
A p f /mm2 150 t ' , t w , t /mm 10
f s k /MPa 351 h d /mm 100
A s /mm2 502.65 h s /mm 180
f k , f ' k /MPa 283 h /mm 280
b s u /mm 80 a f /mm 3.5

Table 7

Comparisons between analytical and"

试件编号 抗弯极限承载力/(kN·m) 理论值/试验值
理论值 试验值
USC?1 147.4 157.8 0.934
RSC?1 175.7 188.4 0.933
RSC?2 187.0 202.8 0.922
1 黄侨 . 桥梁钢⁃混凝土组合结构设计原理[M]. 2版. 北京:人民交通出版社, 2017.
2 戴昌源,苏庆田 . 钢⁃混凝土组合桥面板负弯矩区裂缝宽度计算[J]. 同济大学学报:自然科学版, 2017, 45(6):806⁃813.
Dai Chang⁃yuan , Su Qing⁃tian . Crack width calculation of steel⁃concrete composite bridge deck in negative moment region[J]. Journal of Tongji University (Natural Science), 2017, 45(6): 806⁃813.
3 尚守平,李知兵,彭晖 . 碳纤维板⁃混凝土界面黏结性能的试验研究与有限元分析[J]. 湖南大学学报:自然科学版, 2014, 41(6):43⁃51.
Shang Shou⁃ping , Li Zhi⁃bing , Peng Hui . Experimental research and finite element analysis of the interfacial bonding behavior of CFRP⁃concrete interface[J]. Journal of Hunan University (Natural Sciences), 2014, 41(6): 43⁃51.
4 El⁃Sayed A K , Al⁃Zaid R A , Al⁃Negheimish A I , et al . Long⁃term behavior of wide shallow RC beams strengthened with externally bonded CFRP plates[J]. Construction and Building Materials, 2014, 51: 473⁃483.
5 Al⁃Saidy A H , Klaiber F W , Wipf T J . Strengthening of steel⁃concrete composite girders using carbon fiber reinforced polymer plates[J]. Construction and Building Materials, 2007, 21(2): 295⁃302.
6 El⁃Hacha R , Aly M Y E . Anchorage system to prestress FRP laminates for flexural strengthening of steel⁃concrete composite girders[J]. Journal of Composites for Construction, 2013, 17(3): 324⁃335.
7 Karam E C , Hawileh R A , El M T , et al . Experimental investigations of repair of pre⁃damaged steel⁃concrete composite beams using CFRP laminates and mechanical anchors[J]. Thin⁃Walled Structures, 2017, 112: 107⁃117.
8 Ayyub B M , Sohn Y G , Saadatmanesh H . Prestressed composite girders. I: experimental study for negative moment[J]. Journal of Structural Engineering, 1992, 118(10): 2743⁃2762.
9 宗周红,郑则群,房贞政,等 . 体外预应力钢⁃混凝土组合连续梁试验研究[J]. 中国公路学报, 2002, 15(1): 44⁃49.
Zong Zhou⁃hong , Zheng Ze⁃qun , Fang Zhen⁃zheng , et al . Experimental study of external prestressed steel⁃concrete composite continuous beams[J]. China Journal of Highway and Transport, 2002, 15(1): 44⁃49.
10 聂建国,陶慕轩 . 体外预应力钢⁃混凝土组合梁受力性能的研究现状与展望[J]. 工程力学, 2011, 28(增刊2):129⁃141,156.
Nie Jian⁃guo , Tao Mu⁃xuan . Research status and perspective on externally prestressed steel⁃concrete composite beams[J]. Engineering Mechanics, 2011,28(Sup.2):129⁃ 141,156.
11 Correia L , Teixeira T , Michels J , et al . Flexural behaviour of RC slabs strengthened with prestressed CFRP strips using different anchorage systems[J]. Composites Part B: Engineering, 2015, 81: 158⁃170.
12 Ghafoori E , M. Normal Motavalli , high and ultra⁃high modulus carbon fiber⁃reinforced polymer laminates for bonded and un⁃bonded strengthening of steel beams [J]. Materials & Design, 2015, 67: 232⁃243.
13 Akbarzadeh H , Maghsoudi A A . Experimental and analytical investigation of reinforced high strength concrete continuous beams strengthened with fiber reinforced polymer[J]. Materials & Design, 2010, 31(3): 1130⁃1147.
14 卜良桃,肖喜平 . 预应力碳纤维板加固RC梁二次受力抗弯性能研究[J]. 铁道科学与工程学报, 2017, 14(1):126⁃134.
Bu Liang⁃tao , Xiao Xi⁃ping . Study on the flexural behavior of RC beams strengthened with prestressed CFRP under secondary load[J]. Journal of Railway Science and Engineering, 2017, 14(1): 126⁃134.
15 GB 50917-2013 钢⁃混凝土组合桥梁设计规范[S].
16 JTG D62-2004 公路钢筋混凝土及预应力混凝土桥涵设计规范[S].
17 余志武,周凌宇,罗小勇 . 钢⁃部分预应力混凝土连续组合梁内力重分布研究[J]. 建筑结构学报, 2002, 23(6):64⁃69.
Yu Zhi⁃wu , Zhou Ling⁃yu , Luo Xiao⁃yong . Study on moment redistribution of Steel⁃partially prestressed concrete composite continuous beams[J]. Journal of Building Structures, 2002, 23(6): 64⁃69.
18 黄侨,万世成,侯旭 . 桥梁预应力碳纤维板加固中的参数取值及损失计算方法研究[J]. 公路交通科技, 2016, 33(9):52⁃57, 83.
Huang Qiao , Wan Shi⁃cheng , Hou Xu . Study on parameter determination and calculation method of prestress loss of prestressed CFRP plates in bridge reinforcement[J]. Journal of Highway and Transportation Research and Development, 2016, 33(9): 52⁃57, 83.
[1] Wan⁃heng LI,Lin SHEN,Shao⁃peng WANG,Shang⁃chuan ZHAO. Damage assessment of bridge construction based onmulti⁃stage subregion mobile test [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 773-780.
[2] HUI Ying-xin,MAO Ming-jie,LIU Hai-feng,ZHANG Shang-rong. Influence of structural seismic response of bridges crossing active fault [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1725-1734.
[3] ZHENG Yi-feng, ZHAO Qun, BAO Wei, LI Zhuang, YU Xiao-fei. Wind resistance performance of long-span continuous rigid-frame bridge in cantilever construction stage [J]. 吉林大学学报(工学版), 2018, 48(2): 466-472.
[4] GONG Ya-feng, HE Yu-long, TAN Guo-jin, SHEN Yang-fan. Anti-overturning stability analysis for three-span continuous curved girder bridge with single column pier [J]. 吉林大学学报(工学版), 2018, 48(1): 133-140.
[5] WEI Zhi-gang, LIU Han-bing, SHI Cheng-lin, GONG Ya-feng. Calculation of transverse distribution coefficient of simply supported beam bridge with effect of bridge deck pavement [J]. 吉林大学学报(工学版), 2018, 48(1): 105-112.
[6] WEI Zhi-gang, SHI Cheng-lin, LIU Han-bing, ZHANG Yun-long. Dynamic characteristics of steel-concrete composite simply supported beam under vehicles [J]. 吉林大学学报(工学版), 2017, 47(6): 1744-1752.
[7] ZHANG Yun-long, LIU Zhan-ying, WU Chun-li, WANG Jing. Static and dynamic responses of steel-concrete composite beams [J]. 吉林大学学报(工学版), 2017, 47(3): 789-795.
[8] SUN Wei, LI Jian, JIA Shi. Identification of nonlinear stiffness and damping for hard-coating composite structure [J]. 吉林大学学报(工学版), 2016, 46(4): 1156-1162.
[9] LIU Han-bing, SHI Cheng-lin, TAN Guo-jin. Finite element solution of composite beam with effect of shear slip [J]. 吉林大学学报(工学版), 2016, 46(3): 792-797.
[10] TAN Guo-jin, LIU Zi-yu, WEI Hai-bin, WANG Long-lin. Calculation of natural frequency of simply supported beam bridge reinforced with eccentric prestressed tendons [J]. 吉林大学学报(工学版), 2016, 46(3): 798-803.
[11] CAO Shan-shan, LEI Jun-qing. Fatigue life prediction of steel structure considering interval uncertainty [J]. 吉林大学学报(工学版), 2016, 46(3): 804-810.
[12] XIAO Yun, LEI Jun-qing, ZHANG Kun, LI Zhong-san. Fatigue stiffness degradation of prestressed concrete beam under multilevel amplitude cycle loading [J]. 吉林大学学报(工学版), 2013, 43(03): 665-670.
[13] JIAO Chang-ke, LI Ai-qun, WU Xiao-ping. Double-deck long-span cable-stayed bridge seismic response to multi-support excitation [J]. , 2012, 42(04): 910-917.
[14] LIU Han-bing, ZHENG Ji-guang, ZOU Pin-de. Calculation on bearing capacity of eccentric compression reinforced concrete short column with circular combined-section [J]. 吉林大学学报(工学版), 2011, 41(增刊2): 159-163.
[15] GONG Ya-feng, CHENG Yong-chun, JIAO Yu-bo. Damage identification of urban overpasses based on static strain data and neural networks optimized by genetic algorithm [J]. 吉林大学学报(工学版), 2011, 41(增刊2): 164-169.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!