Journal of Jilin University(Engineering and Technology Edition) ›› 2022, Vol. 52 ›› Issue (9): 2096-2106.doi: 10.13229/j.cnki.jdxbgxb20220325

Previous Articles    

Coordinated optimal dispatch strategy of wind and photovoltaic power generation and new energy vehicles

Miao-miao MA1(),Li-cheng LIU1,Xin WANG2,Mao YANG3   

  1. 1.School of Control and Computer Engineering,North China Electric Power University,Beijing 102206,China
    2.Beijing HiRain Technologies Co. ,Ltd. ,Beijing 100191,China
    3.Key Laboratory of Modern Power System Simulation and Control & Renewable Energy Technology,Northeast Electric Power University,Ministry of Education,Jilin 132012,China
  • Received:2022-03-29 Online:2022-09-01 Published:2022-09-13

Abstract:

A coordinated optimal dispatch strategy of wind and photovoltaic generation and new energy vehicles was proposed for the problem, which is caused by large-scale new energy vehicles disorderly charging in power grid. Firstly, the model of new energy vehicles power battery was built, and a calculation method of charging load based on Monte Carlo method was proposed. Secondly, based on the principle of wind and photovoltaic power generation, the mathematical models of wind power generation and photovoltaic power generation were established. Finally, The objective function of the dispatch strategy is to minimize the standard deviation of the comprehensive load of the power grid, and the active set algorithm was utilized to solve the quadratic programming problem to obtain the coordinated optimal dispatch strategy. The simulation results show that the strategy can effectively avoid the aggravating difference between peak and valley load, which is caused by large-scale new energy vehicles disorderly charging in power grid.

Key words: new energy vehicle, power battery, wind and photovoltaic generation, coordinated optimal

CLC Number: 

  • U469.72

Fig.1

Operating principle of power battery"

Fig.2

GNL equivalent circuit battery model"

Fig.3

Distribution of daily mileage of new energy vehicles"

Fig.4

Distribution of starting charging time of new energy vehicles"

Fig.5

Flow chart of proposed algorithm based on Monte Carlo simulation"

Fig.6

Operating principle of photovoltaic cell"

Fig.7

Output characteristics of photovoltaic cell"

Fig.8

Load curve of disorderly charging of new energy vehicles"

Fig.9

Influence of disordered charging onpower grid"

Fig.10

Average wind speed on a typical day"

Fig.11

Output power of wind power generation"

Fig.12

Output power of photovoltaic power generation"

Fig.13

Equivalent load curve considering renewable energy generation and disorderly charging of new energy vehicles"

Fig.14

Curve of orderly charging and discharging of new energy vehicles"

Fig.15

Comparison of charging load curves before and after optimization"

Fig.16

Comparison of microgrid load curves before and after optimization"

Table 1

Comparison of power grid indexes before and after optimization"

峰值负荷/kW谷值负荷/kW峰谷差/kW峰谷差率/%标准差/kW
基础负荷38001023277773973

计及无序

充电负荷

4633.7838.73795821390

协同优化

后总负荷

2646.81417.51229.346337
1 文云峰, 杨伟峰, 汪荣华, 等. 构建100%可再生能源电力系统述评与展望[J]. 中国电机工程学报, 2020, 40(6): 1843-1856.
Wen Yun-feng, Yang Wei-feng, Wang Rong-hua, et al. Review and prospect of toward 100% renewable energy power systems[J]. Proceedings of the CSEE, 2020, 40(6): 1843-1856.
2 卓振宇, 张宁, 谢小荣, 等. 高比例可再生能源电力系统关键技术及发展挑战[J]. 电力系统自动化, 2021, 45(9): 171-191.
Zhuo Zhen-yu, Zhang Ning, Xie Xiao-rong, et al. Key technologies and developing challenges of power system with high proportion of renewable energy[J]. Automation of Electric Power Systems, 2021, 45(9): 171-191.
3 师瑞峰, 李少鹏. 电动汽车V2G问题研究综述[J].电力系统及其自动化学报, 2019, 31(6): 28-37.
Shi Rui-feng, Li Shao-peng. Review on studies of V2G problem in electric vehicles[J]. Proceedings of the CSU-ESPA, 2019, 31(6): 28-37.
4 张学清, 梁军, 张利, 等. 计及风光电源的一种地区电网电动汽车充电调度方法[J]. 电工技术学报, 2013, 28(2): 28-35.
Zhang Xue-qing, Liang Jun, Zhang Li, et al. Approach for plug-in electric vehicles charging scheduling considering wind and photovoltaic power in chinese regional power grids[J]. Transactions of China Electrotechnical Society, 2013, 28(2): 28-35.
5 王惠洲, 于艾清. 基于联盟区块链交易平台的电动汽车有序充电相对鲁棒优化[J]. 中国电力, 2019, 52(8): 126-134.
Wang Hui-zhou, Yu Ai-qing. Relative robust optimization of coordinated charging of electric vehicles based on the consortium blockchain trading platform[J]. Electric Power, 2019, 52(8): 126-134.
6 冉忠, 刘文颖, 荣俊杰, 等. 电动汽车参与受阻风电消纳的源荷优化控制方法[J]. 可再生能源, 2020, 38(3): 358-365.
Ran Zhong, Liu Wen-ying, Rong Jun-jie, et al. Source-load optimization control method for electric vehicles participating in blocked wind power consumption[J]. Renewable Energy Resources, 2020, 38(3): 358-365.
7 赵俊华, 文福拴, 薛禹胜, 等. 计及电动汽车和风电出力不确定性的随机经济调度[J]. 电力系统自动化, 2010, 34 (20): 22-29.
Zhao Jun-hua, Wen Fu-shuan, Xue Yu-sheng, et al. Power system stochastic economic dispatch considering uncertain outputs from plug-in electric vehicles and wind generators[J]. Automation of Electric Power Systems, 2010, 34(20): 22-29.
8 刘东奇, 王耀南, 袁小芳. 电动汽车充放电与风力/火力发电系统的协同优化运行[J]. 电工技术学报, 2017, 32(3): 18-26.
Liu Dong-qi, Wang Yao-nan, Yuan Xiao-fang. Cooperative dispatch of large-scale electric vehicles with wind-thermal power generating system[J]. Transactions of China Electrotechnical Society, 2017, 32(3): 18-26.
9 茆美琴, 孙树娟, 苏建徽. 包含电动汽车的风/光/储电网经济性分析[J]. 电力系统自动化, 2011, 35(14): 30-35.
Mao Mei-qin, Sun Shu-juan, Su Jian-hui. Economic analysis of a microgrid with wind /photovoltaic/ storages and electric vehicles[J]. Automation of Electric Power Systems, 2011, 35(14): 30-35.
10 袁桂丽, 王宝源. 含电动汽车的虚拟电厂经济性优化调度[J]. 太阳能学报, 2019, 40(8): 2395-2404.
Yuan Gui-li, Wang Bao-yuan. Economic optimal dispatch of virtual power plant with electric vehicles[J]. Acta Energiae Solaris Sinica, 2019, 40(8): 2395-2404.
11 刘树林. 电动汽车用锂离子动力电池建模与状态估计研究[D]. 济南: 山东大学控制科学与工程学院, 2017.
Liu Shu-lin. Research on modeling and state estimation of lithium-ion power battery for electric vehicles[D]. Jinan: School of Control Science and Engineering, Shandong University, 2017.
12 肖岩, 龚春忠, 张洪雷. 基于Simulink的动力锂离子电池建模研究[J]. 汽车实用技术, 2018, 42(22): 14-16.
Xiao Yan, Gong Chun-zhong, Zhang Hong-lei. Modeling of power lithium ion battery based on Simulink[J]. Automobile Applied Technology, 2018, 42(22): 14-16.
13 李昊阳. 电动汽车锂电池建模及SOC估算方法研究[D]. 长春: 吉林大学仪器科学与电气工程学院, 2020.
Li Hao-yang. Research on modeling and SOC estimation of lithium battery for electric vehicle[D]. Changchun: College of Instrumentation & Electrical Engineering, Jilin University, 2020.
14 Clement-Nyns K, Haesen E, Driesen J. The impact of charging plug-in hybrid electric vehicles on a residential distribution grid[J]. IEEE Transactions on Power Systems, 2010, 25(1): 371-380.
15 Zheng Wen-di, Li Yi-xin, Zhang Min, et al. Reliability evaluation and analysis for NEV charging station considering the impact of charging experience[J]. International Journal of Hydrogen Energy, 2022, 47(6): 3980-3993.
16 李含玉, 杜兆斌, 陈丽丹, 等. 基于出行模拟的电动汽车充电负荷预测模型及V2G评估[J]. 电力系统自动化, 2019, 43(21): 88-96.
Li Han-yu, Du Zhao-bin, Chen Li-dan, et al. Trip simulation based charging load forecasting model and vehicle-to-grid evaluation of electric vehicles[J]. Automation of Electric Power Systems, 2019, 43(21): 88-96.
17 陈丽丹, 聂涌泉, 钟庆. 基于出行链的电动汽车充电负荷预测模型[J]. 电工技术学报, 2015, 30(4): 216-225.
Chen Li-dan, Nie Yong-quan, Zhong Qing. A model for electric vehicle charging load forecasting based on trip chains[J]. Transactions of China Electrotechnical Society, 2015, 30(4): 216-225.
18 罗卓伟, 胡泽春, 宋永华, 等. 电动汽车充电负荷计算方法[J]. 电力系统自动化, 2011, 35(14): 36-42.
Luo Zhuo-wei, Hu Ze-chun, Song Yong-hua, et al. Study on plug-in electric vehicles charging load calculating[J]. Transactions of China Electrotechnical Society, 2011, 35(14): 36-42.
19 秦大同, 李超, 唐飞熊. 变风载下变速风力发电机传动系统动力学特性研究[J]. 太阳能学报, 2013, 34(2): 186-195.
Qin Da-tong, Li Chao, Tang Fei-xiong. Study on dynamic characteristics of gear transmission system of variable speed wind generation under varying wind load[J]. Acta Energiae Solaris Sinica, 2013, 34(2): 186-195.
20 马苗苗, 邵黎阳, 刘向杰. 分布式预测控制在微电网协调控制中的应用[J]. 吉林大学学报: 工学版, 2020, 50(6): 2258-2265.
Ma Miao-miao, Shao Li-yang, Liu Xiang-jie. Application of distributed predictive control in coordinated control of microgrid[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(6): 2258-2265.
21 赵兴勇, 王帅, 吴新华, 等. 含分布式电源和电动汽车的电网协调控制策略[J]. 电网技术, 2016, 40(12): 3732-3740.
Zhao Xing-yong, Wang Shuai, Wu Xin-hua, et al. Coordinated control strategy research of micro-grid including distributed generations and electric vehicles[J]. Power System Technology, 2016, 40(12): 3732-3740.
22 Li Shao-wu. Circuit parameter range of photovoltaic system to correctly use the MPP linear model of photovoltaic cell[J]. Energies, 2021, 14(13): 1-27.
23 Wang Shao-xin, Yang Hu. Conditioning theory of the equality constrained quadratic programming and its applications[J]. Linear and Multilinear Algebra, 2021, 69(6):1161-1183.
24 Kumari S, Srivastava S. Application of stochastic programming technique to solve interval quadratic programming problem[J]. International Journal of Applied and Computational Mathematics, 2021, 7(1): No.17.
[1] Ling ZHU,Qiu-cheng WANG. New energy vehicle drive system coordinated control method under spatial geometric constraints [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(7): 1509-1514.
[2] Ji⁃qing CHEN,Meng⁃meng LIU,Feng⁃chong LAN. Experiment on overcharge safety of NCM battery and battery pack [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1072-1080.
[3] ZHANG Xiang-wen, GAO Guan. Real-time on-line monitoring system for power battery insulation resistance of electric vehicle [J]. 吉林大学学报(工学版), 2017, 47(5): 1395-1402.
[4] HE Yao, LIU Xing-tao, ZHANG Chen-bin, CHEN Zong-hai. Insulation detection algorithm for high-power battery system based on internal resistance model [J]. 吉林大学学报(工学版), 2013, 43(05): 1165-1170.
[5] HE Lei, ZONG Chang-fu, JIANG Guo-hua, ZHENG Hong-yu, LI Gang. SOC estimation and fault tolerant control method of power battery for steering-by-wire system [J]. 吉林大学学报(工学版), 2012, 42(增刊1): 17-21.
[6] XIONG Rui, HE Hong-wen, XU Yong-li, HE Yin. Modeling and parameter identification approach for power battery pack used in electric vehicle [J]. , 2012, 42(04): 809-815.
[7] LI Yang, WANG Yong-wu, ZHANG Huo-cheng, ZHANG Na, ZOU Yu-feng. Investigation of sorting with dynamic state of charge of lithium-iron-phosphate power battery [J]. 吉林大学学报(工学版), 2011, 41(增刊2): 331-333.
[8] HE Hong-wen, XIONG Rui. State-of-charge estimation of lithium-ion power battery using sliding mode observer [J]. 吉林大学学报(工学版), 2011, 41(03): 623-628.
[9] He Hong-wen, Yu Xiao-jiang . Performance evaluation of electric vehicle power battery
[J]. 吉林大学学报(工学版), 2006, 36(05): 659-0663.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!