Journal of Jilin University(Engineering and Technology Edition) ›› 2022, Vol. 52 ›› Issue (10): 2474-2485.doi: 10.13229/j.cnki.jdxbgxb20210309

Previous Articles    

Operational parameter optimization and testing of an air-assisted multi-fan orchard sprayer

Jian-ping LI(),Yong-liang BIAN,Xin YANG(),Peng-fei WANG,Xin-hao LI,Chun-lin XUE   

  1. College of Mechanical and Electrical Engineering,Hebei Agricultural University,Baoding 071000,China
  • Received:2021-04-12 Online:2022-10-01 Published:2022-11-11
  • Contact: Xin YANG E-mail:ljpnd327@126.com;yangxin@hebau.edu.cn

Abstract:

An orchard sprayer with symmetrical fans was designed to solve the problem of serious waste of liquid waste and difficulty in penetrating droplets inside the canopy of fruit trees during the operation of pest control in low anvil Close Planting Orchard. Based on the STAR-CCM+ simulation analysis of the single side flow field, the airflow rate is 4397.1 m3/h, the wind speed is 9.7 m/s, and the wind maneuver pressure is 47.3 Pa when the speed of the tractor PTO is 540 r/min. The airflow velocity reaching the outer canopy of the fruit tree is over 5.5 m/s, sufficient to reach the center of the canopy. The Box-Behnken design was adopted to optimize the combination of sprayer system parameters. The optimal parameters are obtained: the spray pressure is 0.8 MPa, the spray distance is 1.25 m, and the nozzle type if fan-shaped 02. The adhesion of chemicals onto the fruit tree canopy in the vertical direction is simulated with a vertical droplet distribution meter. Experiment results show that the variation coefficient of droplet deposition is 10%-12%, meaning the distribution of droplets is relatively uniform. Field experiments show that the total droplet deposition on the upper, middle and lower layers of the canopy in the vertical direction is 68, 145, and 195 mL, respectively, and the overall standard deviations are 1.61, 3.72, and 5.29, respectively. The number of droplets attached to the leaves is ≥70 particles/cm2, which meets the requirements of air-assisted orchard sprayer standard, offering adequate coverage of the fruit tree canopy in the vertical direction.

Key words: air blower, air assisted technology, multiple fans, spray system, CFD, box-behnken orthogonal test

CLC Number: 

  • S224.3

Fig.1

Overall structure of sprayer"

Table 1

Main structural parameters of sprayer"

参 数数 值
挂接型式悬挂式
动力输入PTO

外形尺寸(长×宽×高)/

(mm×mm×mm)

1500×1030×2440
隔膜泵
最大载药量/L400
风机形式轴流风机
风机直径/mm500
喷嘴形式6通道控制,环形布置
喷头数量/个18

Fig.2

Schematic diagram of spraying operation"

Fig.3

Grid division diagram andvelocity vector diagram"

Fig.4

Schematic diagram of spray system setup"

Table 2

Factor level table of orthogonal experiment"

编码值喷雾压力A/MPa喷雾距离B/cm

喷头流量C/

(L·min-1

-10.61000.15
00.81250.20
11.01500.30

Table 3

Test scheme and results of droplet deposition"

试验序号ABC雾滴沉积量Y/mL
1-1-1054
21-1075
3-11044
4-11045
5-10-137
6-10-145
7-10146
810160
90-1-163
1001-132
110-1159
1201150
1300065
1400064
1500066
1600067
1700064

Fig.5

Test instrument and scene"

Table 4

Variance analysis of the regression equation of droplet deposition"

来源平方和自由度均方Fp
模型2293.649254.8592.43< 0.0001**
A242.001242.0087.77< 0.0001**
B800.001800.00290.16< 0.0001**
C180.501180.5065.47< 0.0001**
AB100.001100.0036.270.0005*
AC9.0019.003.260.1138
BC121.001121.0043.890.0003*
A2227.461227.4682.50< 0.0001**
B247.25147.2517.140.0044*
C2495.671495.67179.78< 0.0001**
残差19.3072.76
失拟项12.5034.172.450.2033
纯误差6.8041.70
总和2312.9416

Fig.6

Response surface of interaction factors to droplet deposition"

Table 5

Distribution of droplet deposition"

高度/m雾滴沉积量/mL均值
T1T2T3T4T5T6T7T8T9
0.5~0.746423934252124252631.33
0.7~0.937353237464047444240.00
0.9~1.155454552494646474748.00
1.1~1.351484655484646434447.44
1.3~1.539363255464141413640.78
1.5~1.737313547454037353938.44
1.7~1.935293539424235313135.44
1.9~2.135293032273534.5292931.17
2.1~2.321262933292522292626.67
2.3~2.522262022202017152020.22
2.5~2.718242223192323191821.00
2.7~2.916181815162216131416.44
2.9~3.115121313131215121313.11
3.1~3.314111213131214121212.56
3.3~3.514111114121112111111.89
变异系数/%11.610.510.211.812.011.011.211.911.310.9

Fig.7

Comparison of droplet deposition of each canopy and each collection unit"

Fig.8

Field spray test of multi-fan spraying device"

Fig.9

Water sensitive paper processed by "Imagepy-master""

Fig.10

Droplet deposition density of the target fruit tree canopy"

1 李龙龙, 何雄奎, 宋坚利, 等. 果园仿形变量喷雾与常规风送喷雾性能对比试验[J]. 农业工程学报, 2017, 33(16): 56-63.
Li Long-long, He Xiong-kui, Song Jian-li, et al. Comparative experiment on profile variable rate spray and conventional air assisted spray in orchards[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(16): 56-63。
2 梁海忠, 范崇辉, 王琰, 等. 苹果高纺锤形树体枝量、果实产量与品质的研究[J]. 西北农林科技大学学报: 自然科学版, 2010, 38(7): 123-128.
Liang Hai-zhong, Fan Chong-hui, Wang Yan, et al. Research on shoot number, fruit yield and quality of high-spindle apple trees[J]. Journal of Northwest A & F University(Natural Science Edition), 2010, 38(7): 123-128.
3 边永亮, 李建平, 薛春林, 等. 果园风送式喷雾机智能化发展现状与前景分析[J]. 东北农业大学学报, 2020, 51(2): 86-94.
Bian Yong-liang, Li Jian-ping, Xue Chun-lin, et al. Analysis on status quo and prospects of intelligent development of air-feed sprayer in orchard[J]. Journal of Northeast Agricultural University, 2020, 51(2): 86-94.
4 周良富, 张晓辛, 吕晓兰, 等. 圆盘雾化器风力性能数值模拟与试验[J]. 农业机械学报, 2012, 43(10): 72-75, 81.
Zhou Liang-fu, Zhang Xiao-xin, Xiao-lan Lü, et al. Numerical simulation and experiment on wind performanceof disc atomizer[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(10): 72-75, 81.
5 宋淑然, 陈建泽, 洪添胜, 等. 远射程风送式喷雾机风场中雾滴粒径变化规律[J]. 农业工程学报, 2017, 33(6): 59-66.
Song Shu-ran, Chen Jian-ze, Hong Tian-sheng, et al. Variation of droplet diameter in wind field for long-range air-assisted sprayer[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(6): 59-66.
6 Gupta Pankaj. Air flow characteristics of an air-assisted sprayer through horizontal crop canopy[J]. International Journal of Agricultural & Biological Engineering, 2012, 5(1): 1-7.
7 Fuentes M A, Diezma G L J, Roldán B L G, et al. Testing the influence of the air flow rate on spray deposit, coverage and losses to the ground in a super-intensive olive orchard in southern Spain[C]∥The 13th Workshop on Spray Application in Fruit Growing. Germany: Julius-Kühn-Archiv, 2015, 448: 17-18.
8 Dekeyser D, Duga A T, Verboven P, et al. Assessment of orchard sprayers using laboratory experiments and computational fluid dynamics modelling[J]. Biosystems Engineering, 2013, 114(2): 157-169.
9 宋雷洁, 李建平, 杨欣, 等. 塔型风送式果园喷雾机风场参数优化设计[J]. 农机化研究, 2020, 42(4): 12-17.
Song Lei-jie, Li Jian-ping, Yang Xin, et al. Optimization design of wind field parameters of tower type wind-driven orchard sprayer[J]. Journal of Agricultural Mechanization Research, 2020, 42(4): 12-17.
10 宋淑然, 夏侯炳, 卢玉华, 等. 风送式喷雾机导流器结构优化及试验研究[J].农业工程学报, 2012, 28(6): 7-12.
Song Shu-ran, Xia Hou-bing, Lu Yu-hua, et al. Structural optimization and experiment on fluid director of air-assisted sprayer[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(6): 7-12.
11 Reichard D L, Retzer H J, Liljedahl L A, et al. Spray droplet size distributions delivered by air blast orchard sprayers[J]. Transactions of the ASAE, 1977, 20(2): 232-237.
12 Mona Hassanzadeh Jobehdar. Experimental study of two-phase flow in a liquid cross-flow and an effervescent atomizer[D]. London(Canada):University of Western Ontario, 2017.
13 周良富, 张玲, 薛新宇, 等. 3WQ-400型双气流辅助静电果园喷雾机设计与试验[J]. 农业工程学报, 2016, 32(16): 45-53.
Zhou Liang-fu, Zhang Ling, Xue Xin-yu, et al. Design and experiment of 3WQ-400 double air-assisted electrostatic orchard sprayer[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(16): 45-53.
14 Godyn A, Holownicki R, Doruchowski G, et al. Dual-fan orchard sprayer with reversed air-stream-preliminary trials[J]. Agricultural Engineering International: The CIGR Journal, 2008(1): 1-12.
15 Delele M A, Jaeken P, Debaer C, et al. CFD prototyping of an air-assisted orchard sprayer aimed at drift reduction[J]. Computers and Electronics in Agriculture, 2007, 55(1): 16-27.
16 Endalew A M, Debaer C, Rutten N, et al. Modelling pesticide flow and deposition from air-assisted orchard spraying in orchards: a new integrated CFD approach[J]. Agricultural and Forest Meteorology, 2010, 150(10): 1383-1392.
17 丁天航, 曹曙明, 薛新宇, 等. 果园喷雾机单双风机风道气流场仿真与试验[J].农业工程学报, 2016, 32(14): 62-68, 315.
Ding Tian-hang, Cao Shu-ming, Xue Xin-yu, et al. Simulation and experiment on single-channel and double-channel airflow field of orchard sprayer[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(14): 62-68, 315.
18 Garciaramos F J, Vidal M, Bone A, et al. Analysis of the air flow generated by an air-assisted sprayer equipped with two axial fans using a 3D Sonic anemometer[J]. Sensors, 2012, 12(6): 7598-7613.
19 Garciaramos F J, Vidal M, Bone A, et al. Field evaluation of an air-assisted sprayer equipped with two reversed rotation fans[J]. Applied Engineering in Agriculture, 2009, 25(4): 481-494.
20 戴奋奋. 风送喷雾机风量的选择与计算[J]. 植物保护, 2008, 45(6):124-127.
Dai Fenfen. Selection and calculation of the blowing rate of air-assisted sprayers[J]. Plant Protection,2008, 45(6):124-127.
21 续魁昌, 王洪强, 盖京方, 等. 风机手册[M]. 2版.北京:机械工业出版社,2011.
22 周良富, 傅锡敏, 丁为民, 等. 组合圆盘式果园风送喷雾机设计与试验[J].农业工程学报, 2015, 31(10): 64-71.
Zhou Liang-fu, Fu Xi-min, Ding Wei-min, et al. Design and experiment of combined disc air-assisted orchard sprayer[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(10): 64-71.
23 刘冬梅, 周宏平, 茹煜, 等. 扇形喷头结构和压力对微生物农药雾滴分布及活性的影响[J]. 农业工程学报, 2018, 34(21): 57-64.
Liu Dong-mei, Zhou Hong-ping, Ru Yu, et al. Effect of fan nozzle structure and pressure on distribution and activity of microbial pesticide droplets[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(21): 57-64.
24 全国农业机械标准化技术委员会. 喷雾机( 器) 作业质量:NY /T 650—2013[M].北京:中华人民共和国农业部,2013.
25 边永亮, 李建平, 薛春林, 等. 单旋翼油动无人机与圆形果园风送喷雾机作业性能对比试验研究[J]. 中国农业大学学报, 2020, 25(12): 134-141.
Bian Yong-liang, Li Jian-ping, Xue Chun-lin, et al. A comparative study on the performance of single-rotor oil-propelled UAV and circular air-fed orchard sprayer[J]. Journal of China Agricultural University, 2020, 25(12): 134-141.
26 全国农业机械标准化技术委员会. 风送式果园喷雾机作业质量:NY/T 992—2006[M].北京:中华人民共和国农业部,2006.
[1] Xin CHEN,Xin-jian RUAN,Ming LI,Ning WANG,Jia-ning WANG,Kai-xuan PAN. Application of modified discrete scheme based onlarge eddy simulation [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1756-1763.
[2] SUN Zheng, HUANG Yu-qi, YU Xiao-li. Numerical simulation of flow and heat transfer in journal bearing lubrication [J]. 吉林大学学报(工学版), 2018, 48(3): 744-751.
[3] WAN Ying, ZHAO Wei-qiang, FENG Ran, LING Jin-peng, ZONG Chang-fu, ZHENG Hong-yu. Dynamic modeling and vehicle-liquid coupling characteristic analysis for tank trucks [J]. 吉林大学学报(工学版), 2017, 47(2): 353-364.
[4] YUAN Zhe, ZHOU Qian-qian, LIU Chun-bao, MA Wen-xing, XU Zhi-xuan. Blade design and aerodynamics of MW wind turbine based on BEM theory [J]. 吉林大学学报(工学版), 2016, 46(4): 1142-1148.
[5] MA Wen-xing,HU Jing,CHU Ya-xu,WANG Song-lin,WU Yue-shi. Dynamic load strength analysis of over-running clutch of dual turbine torque [J]. 吉林大学学报(工学版), 2014, 44(3): 675-679.
[6] XIE Fang-xi, YU Ze-yang, LIU Si-nan, CAO Xiao-feng, JIA Gui-qi, HONG Wei. Effects of injection pressure on fuel spray and air-fuel mixing process of diesel engine [J]. 吉林大学学报(工学版), 2013, 43(06): 1504-1509.
[7] ZHANG Ying-chao, WEI Gan, ZHANG Zhe. Aerodynamic numerical simulation of hatch-back car |with different spoilers [J]. 吉林大学学报(工学版), 2011, 41(01): 1-0005.
[8] ZHANG Ying-Chao, ZHANG Zhe, LI Jie. Virtual wind tunnel test based computational fluid dynamics [J]. 吉林大学学报(工学版), 2010, 40(增刊): 90-0094.
[9] LIU Chun-Bao, MA Wen-Xing, XU Rui. Calculation and analysis of axial force in hydrodynamic torque converter based on CFD [J]. 吉林大学学报(工学版), 2009, 39(05): 1181-1185.
[10] SU Jun-lin, XU Xiao-ying, PAN Liang,ZHU Chang-ming . Numerical simulation and experimental study of oxygenenriched combustion of LPG boiler [J]. 吉林大学学报(工学版), 2009, 39(03): 598-0603.
[11] ZHANG Jun-yuan, MA Xun, LAN Hai-tao, LI Hong-jian, TANG Hong-bin . Simulation technology of vehicle forntal airbag inflating [J]. 吉林大学学报(工学版), 2008, 38(06): 1262-1266.
[12] WU Shan-qiang, LI Man-tian, SUN Li-nin . Centrifugal fan for wireless wallclimbing reconnaissance robot [J]. 吉林大学学报(工学版), 2008, 38(06): 1418-1423.
[13] LI Lu,GUO Qing,GUAN Ming-xiang,JING Qing-feng . Crosslayer design for satellite MAC protocol [J]. 吉林大学学报(工学版), 2008, 38(06): 1458-1462.
[14] LIU Chun-bao,MA Wen-xing,CHU Ya-xu . Application coupling algorithm for multiflowregion in hydrodynamic components [J]. 吉林大学学报(工学版), 2008, 38(06): 1342-1347.
[15] Zhao Dingxuan, Shi Xiangzhong,, Shang Tao. Method of internal 3D flow field numerical simulation for hydrodynamic torque converter [J]. 吉林大学学报(工学版), 2006, 36(02): 199-0203.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!