Journal of Jilin University(Engineering and Technology Edition) ›› 2022, Vol. 52 ›› Issue (11): 2574-2581.doi: 10.13229/j.cnki.jdxbgxb20210368

Previous Articles    

Instant demand⁃responsive scheme for customized bus considering service fairness

Yi-ran WANG1(),Jing-xu CHEN1,Yue-ping WANG2,Jin-biao HUO1,Zhi-yuan LIU1()   

  1. 1.School of Transportation,Southeast University,Nanjing 210096,China
    2.Xiong'an Investment,China Communications Construction Co. ,Ltd. ,Baoding 071700,China
  • Received:2021-04-25 Online:2022-11-01 Published:2022-11-16
  • Contact: Zhi-yuan LIU E-mail:yiranwang@seu.edu.cn;zhiyuanl@seu.edu.cn

Abstract:

An instant demand-responsive scheme for the customized bus(CB) is proposed, which enables vehicles to flexibly adjust routes according to the immediate needs of passengers during operation. A node insertion algorithm is developed to consider practical issues, such as late passenger handling and profit calculation. The implementation of "passenger waiting for bus" mechanism and consideration of passenger acceptable waiting time reduce the occurrence of passenger's bus-missing. In addition, strictly preventing the active rejection of loading can also ensure the fairness of CB service. The proposed model and algorithm are verified by a numerical example based on the CB network of Xiong'an district, Hebei province. The results show that the instant demand-responsive scheme can effectively deal with the situation of passengers being late under the premise of guaranteeing the CB system profit and meanwhile satisficing passengers' service time window.

Key words: engineering of communication and transportation system, customized bus, demand response, route planning, knot insertion algorithm

CLC Number: 

  • U491

Fig.1

Flow chart instant demand-responsive scheme for CB considering service fairness"

Fig.2

Location of CB stations in Xiong'an district, Hebei province"

Table 1

Initial schedule of CB lines"

线路ID途径站点到达时间离开时间服务乘客
118-08∶12∶381234
2308∶14∶0208∶14∶32
808∶16∶2908∶16∶59
3108∶18∶3208∶19∶10
1108∶19∶2308∶19∶53
108∶24∶4608∶25∶16
227-08∶13∶02512
3308∶13∶1908∶13∶49
108∶16∶4408∶17∶14
327-08∶11∶3268
3308∶11∶5008∶12∶20
108∶14∶4508∶15∶15
418-08∶16∶19713, 15]
2008∶16∶3308∶17∶03
2308∶18∶1408∶21∶41
1108∶23∶5808∶24∶28
108∶29∶2108∶29∶51
518-08∶17∶319
608∶20∶2708∶20∶57
617-08∶09∶421011, 14]
808∶12∶3308∶13∶03
1108∶14∶2708∶14∶57
108∶19∶1908∶19∶49

Table 2

Requests information of passengers"

乘客IDtpopdptoptdptop'
18∶02∶2623118∶14∶028∶24∶308∶15∶02
28∶03∶203118∶18∶408∶30∶39
38∶03∶21818∶16∶198∶21∶57
48∶03∶29818∶16∶198∶26∶57
58∶05∶072718∶12∶328∶22∶46
68∶05∶2633118∶11∶508∶20∶35
78∶05∶342318∶21∶118∶37∶39
88∶06∶0627118∶10∶208∶20∶358∶14∶20
98∶06∶231868∶17∶018∶30∶23
108∶06∶441118∶12∶278∶25∶398∶17∶27
118∶08∶321118∶12∶278∶25∶39
128∶08∶363318∶10∶528∶30∶388∶10∶52
138∶09∶532018∶16∶338∶37∶39
148∶10∶03818∶12∶338∶20∶09
158∶10∶3823118∶14∶028∶24∶30
168∶11∶05818∶15∶008∶35∶2408∶19∶00
178∶11∶377368∶15∶498∶24∶5808∶15∶49
188∶11∶38818∶20∶378∶26∶06
198∶12∶24818∶20∶378∶26∶06
208∶13∶19158∶17∶518∶23∶07
218∶13∶303518∶19∶468∶36∶1908∶19∶46
228∶15∶2238128∶20∶258∶28∶40
238∶17∶2439328∶25∶568∶50∶48
248∶19∶143868∶30∶478∶44∶31
258∶20∶57158∶22∶468∶28∶0908∶25∶46

Table 3

Final schedule of CB lines"

线路ID途径站点序列服务乘客编号误车乘客编号收益(¥)
1[18, 23, 8, 8, 35, 31, 1, 1, 1]2341, 21]8.35+4
2[27, 27, 33, 1, 1]5124.39
3[27, 27, 33, 38, 8, 8, 11, 12, 1, 1]6, 18, 19, 22]86.34+2
4[18, 20, 23, 23, 11,1, 1]713, 15]8.70
5[18, 18, 6]91.53
6[17, 8, 8, 11, 11, 7, 1, 1, 1, 1, 5, 5, 36, 39, 38, 6, 32]11, 14, 17, 20, 23, 24, 25]10, 16]18.96+4

Table 4

Algorithm performance comparison"

算 法(误车/拒绝服务乘客数)/人乘客平均等待时间/min运营总收益/元计算耗时/s
本文方案784.11895.470.91
车辆服务水平最优1063.61637.491.57
乘客出行时间最小化1422.21573.640.79

Fig.3

Daily statistical results of instant demand-responsive scheme for CB in Xiong'an"

1 Liu T, Ceder A A. Analysis of a new public-transport-service concept: customized bus in China[J]. Transport Policy, 2015, 39: 63-76.
2 Kirby R F, Bhatt K U. An analysis of subscription bus experience [J]. Traffic Quarterly, 1975, 29(3): 403-425.
3 Pavone M, Frazzoli E, Bullo F. Adaptive and distributed algorithms for vehicle routing in a stochastic and dynamic environment[J]. IEEE Transactions on Automatic Control, 2010, 56(6): 1259-1274.
4 van Engelen M, Cats O, Post H, et al. Enhancing flexible transport services with demand-anticipatory insertion heuristics[J]. Transportation Research Part E: Logistics and Transportation Review, 2018, 110: 110-121.
5 Quadrifoglio L, Dessouky M M, Palmer K. An insertion heuristic for scheduling mobility allowance shuttle transit(MAST) services[J]. Journal of Scheduling, 2007, 10(1): 25-40.
6 邱丰, 李文权, 沈金星. 可变线路式公交的两阶段车辆调度模型[J]. 东南大学学报: 自然科学版, 2014(5): 1078-1084.
Qiu Feng, Li Wen-Quan, Shen Jin-xing. Two stage model for flex-route transit scheduling[J]. Journal of Southeast University(Natual Science Edition), 2014(5): 1078-1084.
7 雷永巍, 林培群, 姚凯斌. 互联网定制公交的网络调度模型及其求解算法[J]. 交通运输系统工程与信息, 2017, 17(1): 157-163.
Lei Yong-wei, Lin Pei-qun, Yao Kai-bin. The network scheduling model and its solution algorithm of internet customized shuttle bus[J]. Journal of Transportation Systems Engineering and Information Technology, 2017, 17(1): 157-163.
8 王健, 曹阳, 王运豪. 考虑出行时间窗的定制公交线路车辆调度方法[J]. 中国公路学报, 2018, 31(5): 143-150.
Wang Jian, Cao Yang, Wang Yun-hao. Customized bus route vehicle schedule method considering travel time windows[J]. China Journal of Highway and Transport, 2018, 31(5): 143-150.
9 孙杨,宋瑞,何世伟.弹性需求下的接运公交网络设计[J].吉林大学学报:工学版, 2011, 41(2): 349-354.
Sun Yang, Song Rui, He Shi-wei. Feeder bus network design under elastic demand[J]. Journal of Jilin University(Engineering and Technology Edition), 2011, 41(2): 349-354.
10 潘述亮, 卢小林, 邹难. 灵活型接驳公交路径优化及协同调度模型[J]. 吉林大学学报: 工学版, 2016, 46(6): 1827-1835.
Pan Shu-liang, Lu Xiao-lin, Zou Nan. Route planning and coordinated scheduling model for flexible feeder transit service[J]. Journal of Jilin University(Engineering and Technology Edition), 2016, 46(6): 1827-1835.
11 Lei C, Jiang Z T, Ou-yang Y F. Path-based dynamic pricing for vehicle allocation in ridesharing systems with fully compliant drivers[J]. Transportation Research Part B: Methodological, 2020, 132: 60-75.
12 Huang D, Gu Y, Wang S A, et al. A two-phase optimization model for the demand-responsive customized bus network design[J]. Transportation Research Part C: Emerging Technologies, 2020, 111: 1-21.
13 Ozbaygin G, Savelsbergh M. An iterative re-optimization framework for the dynamic vehicle routing problem with roaming delivery locations[J]. Transportation Research Part B: Methodological, 2019, 128: 207-235.
[1] Xian-min SONG,Shu-tian YANG,Ming-xin LIU,Zhi-hui LI. Fluctuation characteristics and prediction method of bus travel time between stations [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1792-1799.
[2] Wen-jing WU,Yong-bin ZHAN,Li-li YANG,Run-chao CHEN. Coordinated control method of variable speed limit in on⁃ramp area considering safety distance [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(6): 1315-1323.
[3] Zhi ZHENG,Bo GENG,Fu-min WANG,Jun-hong DONG,Si-si WEI. Improvement of protective ability for existing low⁃grade concrete guardrail [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(6): 1362-1374.
[4] Hong-fei JIA,Zi-han SHAO,Li-li YANG. Ride⁃sharing matching model and algorithm of online car⁃hailing under condition of uncertain destination [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 564-571.
[5] Xing-hua LI,Fei-yu FENG,Cheng CHENG,Wei WANG,Peng-cheng TANG. Choice preference analysis and modeling of ridesplitting service [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 578-584.
[6] Tian-jun FENG,Xue-lu SUN,Jia-sheng HUANG,Xiu-juan TIAN,Xian-min SONG. Two-phase signal intersection delay based on three crossing modes [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 550-556.
[7] Xian-tong LI,Wei QUAN,Hua WANG,Peng-cheng SUN,Peng-jin AN,Yong-xing MAN. Route travel time prediction on deep learning model through spatiotemporal features [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 557-563.
[8] Bi-da ZHANG,Qiang YAN,Lin ZHANG,Hai-rui ZHANG. Charging and battery swapping route planning for electric vehicles based on real-time traffic information [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(10): 2333-2342.
[9] Yan-feng JIA,Da-yi QU,Lu LIN,Rong-han YAO,Xiao-long MA. Coordinated speed control of connected mixed traffic flow based on trajectory [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2051-2060.
[10] Chang-fu ZONG,Long WEN,Lei HE. Object detection based on Euclidean clustering algorithm with 3D laser scanner [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 107-113.
[11] Liang JIANG,Yi HE. Risky driving behavior and influencing factors analysis for electric two⁃wheeler [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1107-1113.
[12] Yi YANG,Si⁃cai WANG,Ying NAN. Optimal algorithm of searching route for large amphibious aircraft [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 963-971.
[13] Xiao⁃qin LUO,Dian⁃hai WANG,Sheng JIN. Traffic signal actuated control at isolated intersections for heterogeneous traffic [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 695-704.
[14] Zhi⁃hui LI,Tao ZHONG,Yong⁃hua ZHAO,Yong⁃li HU,Hai⁃tao LI,Jing⁃wei ZHAO. Pedestrian tracking algorithm for autonomous driving [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 680-687.
[15] QU Da-yi,YANG Jing-ru,BING Qi-chun,WANG Wu-lin,ZHOU Jing-chun. Arterial traffic offset optimization based on queue characteristics at adjacent intersections [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1685-1693.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!