Journal of Jilin University(Engineering and Technology Edition) ›› 2022, Vol. 52 ›› Issue (6): 1362-1374.doi: 10.13229/j.cnki.jdxbgxb20210023

Previous Articles    

Improvement of protective ability for existing low⁃grade concrete guardrail

Zhi ZHENG1,2(),Bo GENG2(),Fu-min WANG2,Jun-hong DONG1,Si-si WEI2   

  1. 1.School of Civil Engineering,Chongqing University,Chongqing 400045,China
    2.National Key Laboratory of Structural Dynamics of Bridge Engineering,China Merchants Chongqing Communications Technology Research and Design Institute Co. ,Ltd. ,Chongqing 400067,China
  • Received:2021-01-11 Online:2022-06-01 Published:2022-06-02
  • Contact: Bo GENG E-mail:zhengzhi@cqu.edu.cn;gengbo01@163.com

Abstract:

Aiming at the problem of the protective capacity of the existing low-grade concrete guardrail does not match the traffic flow,a new composite guard plate which can be directly installed on the surface of concrete guardrail was proposed.A fine finite element model of vehicle-guardrail was established and the anti-collision performance of the new type combined guardrail was analyzed.Then,the protective performance of the GFRP-Concrete combined guardrail was compared with the existing concrete guardrail.The results indicate that the buffering and guiding performance of the combined guardrail is not affected, and the indexes are better than the existing concrete guardrail under the collisions of a light car and medium bus.When it was hit by a heavy truck,the concrete guardrail can not effectively suppress the roll and the vehicle will inevitably turn over.Combined guardrail can overcome to rollover and guide smoothly and the exit angle is only 0.32°.After the transformation,the protective energy of the combined guardrail reaches 290 kJ,and the protective capacity is 1.8 times than the existing low-grade guardrail.

Key words: engineering of communication and transportation system, combined guardrail, numerical simulation, protective capability, composite material

CLC Number: 

  • U417.1

Fig.1

Structural dimension and implementation effect of combined guardrail"

Fig.2

FE models of vehicles"

Table 1

Structural parameters of vehicle models"

车型整车质量/t重心高度/m尺寸(长×宽×高)/m
小型客车1.50.504.25×1.64×1.35
中型客车101.212.6×2.5×3.2
大型货车181.6010×2.5×2.9

Fig.3

FE models of combined guardrail"

Fig.4

Contact settings"

Table 2

Imapct conditions"

车型总质量/t碰撞速度/(km·h-1碰撞角度/(°)碰撞能量/kJ
小型客车1.51002068
中型客车108020288
大型货车186020292

Fig.5

Comparison of vehicle angular displacement time histories"

Fig.6

Comparison of crash test and numerical simulation"

Fig.7

Energy curve of combined guardrail"

Fig.8

Acceleration time history curves of vehicle′s center of gravity"

Fig.9

Time history curves of light car impact force"

Fig.10

Collision angle variation of light car"

Fig.11

Trajectory of light car collision"

Fig.12

Wheel height variations"

Fig.13

Dynamic process under the light car collision"

Fig.14

Time history curves of medium bus impact force"

Fig.15

Collision angle variation of medium bus"

Fig.16

Trajectory of medium bus collision"

Fig.17

Vehicle tail height variations"

Fig.18

Vehicle dynamic extroversion value of medium bus"

Fig.19

Dynamic process under the medium bus collision"

Fig.20

Time history curves of heavy truck impact force"

Fig.21

Collision angle variation of heavy truck"

Fig.22

Height variations of the carriage box tai"

Fig.23

Vehicle dynamic extroversion value of heavy truck"

Fig.24

Dynamic process under the heavy truck collision"

Fig.25

Anti-rollover mechanism"

Fig.26

Guard plate damage"

1 《中国公路学报》编辑部. 中国汽车工程学术研究综述·2017[J]. 中国公路学报,2017,30(6):1-197.
Editorial Board of«China Journal of Highway and Transport». Review on China's automotive engineering research progress:2017[J]. China Journal of Highway and Transport,2017,30(6):1-197.
2 . 高速公路交通安全设施设计及施工技术规范 [S].
3 . 公路交通安全设施设计技术规范 [S].
4 . 公路交通安全设施设计规范 [S].
5 李慧珍. 高速公路旧有波形梁护栏改造方式探析[J]. 中外公路,2014,34(5):324-327.
Li Hui-zhen. Analysis on modification of old rail-shaped guardrail of freeway[J].Journal of China&Foreign Highway,2014,34(5):324-327.
6 陈岳峰,陈礼彪,曾俊铖. 高速公路在用波形梁护栏适应性评价和提升改造技术研究[J]. 公路交通科技,2019,36(9):124-128, 149.
Chen Yue-feng, Chen Li-biao, Zeng Jun-cheng. Study on adaptation evaluation and upgrading technology for W-beam barrier used in expressway[J].Journal of Highway and Transportation Research and Development,2019,36(9):124-128, 149.
7 陈涛,吴灵生,田东翔,等. 高速公路波形梁护栏安全性评价[J]. 长安大学学报: 自然科学版,2017,37(6):92-98.
Chen Tao, Wu Ling-sheng, Tian Dong-xiang,et al.Safety evaluation of W-beam guardrail on freeway[J]. Journa of Chang'an University(Natural Science Edition),2017,37(6):92-98.
8 赵庆云,卜令涛,吴军鹏,等. 三横梁组合式桥梁护栏仿真与试验研究[J]. 公路工程,2020,45(5):135-141.
Zhao Qing-yun, Bu Ling-tao, Wu Jun-peng,et al.Simulation and experimental study of a 3-beam combined bridge barrier[J].Highway Engineering,2020,45(5):135-141.
9 刘伟庆,方海,祝露,等. 船-桥碰撞力理论分析及复合材料防撞系统[J]. 东南大学学报:自然科学版,2013,43(5): 1080-1086.
Liu Wei-qing, Fang Hai, Zhu Lu,et al.Ship-bridge collision force mechanism and composite anti-collision system[J]. Journal of Southeast University (Natural Science Edition),2013,43(5):1080-1086.
10 方海,王健,祝露,等. 武汉鹦鹉洲长江大桥中塔墩防船撞装置研究[J]. 桥梁建设,2020,50(1):20-25.
Fang Hai, Wang Jian, Zhu Lu,et al.Study of collision protection devices for central pylon pier of Yingwuzhou Chang jiang river bridge in Wuhan[J]. Bridge Construction,2020,50(1):20-25.
11 Fang H, Mao Y, Liu W,et al. Manufacturing and evaluation of large-scale composite bumper system for bridge pier protection against ship collision[J]. Composite Structures,2016,158:187-198.
12 张锡祥,王智祥,巫祖烈,等. 一种新型FRP桥墩防撞浮箱结构[J]. 重庆交通大学学报:自然科学版,2011,30(3):388-393, 510.
Zhang Xi-xiang, Wang Zhi-xiang, Wu Zu-lie,et al.A late-model FRP floating pontoon protection structure for bridge piers in the ship collison[J].Journa of Chongqing Jiaotong University(Natural Science),2011,30(3):388-393, 510.
13 潘晋,方涵,吴亚锋,等. 桥墩复合材料防车撞结构碰撞性能试验研究[J]. 华中科技大学学报: 自然科学版,2018,46(10):14-20.
Pan Jin, Fang Han, Wu Ya-feng,et al. Experimental study on performance of composite protection structure for bridge pier against vehicle collision[J].Journal of Huazhong University of Science and Technology,(Natural Science Edition),2018,46(10):14-20.
14 Pan Jin, Fang Han, Xu Ming-cai,et al. Study on the performance of energy absorption structure of bridge piers against vehicle collision[J]. Thin Walled Structures,2018,130:85-100.
15 Bank L C, Gentry T R. Development of a pultruded composite material highway guardrail[J]. Composites Part A: Applied Science and Manufacturing,2001,32(9):1329-1338.
16 Dutta P K. An investigation into the design and manufacture of FRP composite W-beam guardrail[J]. International Journal of Materials and Product Technology,2003,19(1/2):130-152.
17 金思宇,黄有平,范欣愉,等. 玻纤增强热塑性复合材料公路护栏应用技术开发[J]. 高科技纤维与应用,2016,41(4):56-64, 69.
Jin Si-yu, Huang You-ping, Fan Xin-yu,et al.Technical development of highway guardrail with glass fiber reinforced thermoplastic composites[J]. Hi-Tech Fiber&Application,2016,41(4):56-64, 69.
18 孙胜江,朱长华,梅葵花. 玄武岩纤维复合材料梁-柱式护栏防撞性能[J]. 振动与冲击,2019,38(21):265-270.
Sun Sheng-jiang, Zhu Chang-hua, Mei Kui-hua. Anti-collision performance of basalt fiber composite beam-column guardrails[J].Journal of Vibration and Shock,2019,38(21):265-270.
19 . 公路交通安全设施设计细则 [S].
20 闫书明. 有限元仿真方法评价护栏安全性能的可行性[J].振动与冲击,2011,30(1):152-156.
Yan Shu-ming. Feasibility analysis of barrier safety evaluation with finite element simulation method[J]. Journal of Vibration and Shock,2011,30(1):152-156.
21 Yin H, Fang H, Wang Q,et al. Design optimization of a MASH TL-3 concrete barrier using RBF-based meta models and nonlinear finite element simulations[J]. Engineering Structures, 2016, 114:122-134.
22 Marzougui D, Kan C D, Opiela K S. Crash test & simulation comparisons of a pickup truck & a small car oblique impacts into a concrete barrier[C]∥The 13th International LS-DYNA Users Conference, Dearborn,2013: 1-18.
23 Polivka K A, Faller R K, Sicking D L,et al. Performance evaluation of the permanent new Jersey safety shape barrier-update to NCHRP 350 Test No.4-12(2214NJ-2),TRP-03-178-06[EB/OL].[2020-12-18].
24 Chen J Y, Fang H, Liu W Q,et al. Energy absorption of foam-filled multi-cell composite panels under quasi-static compression[J]. Composites Part B:Engineering,2018,153:295-305.
25 Wang J J, Song Y C, Wang W,et al. Evaluation of composite crash worthy device for pier protection against barge impact[J]. Ocean Engineering,2018,169:144-158.
26 雷正保,彭作,刘兰,等. 弯道混凝土护栏碰撞特性的优化设计[J]. 振动与冲击,2009,28(5):6-9, 26, 200.
Lei Zheng-bao, Peng Zuo, Liu Lan,et al. Optimization design of the collision characteristics of curved concrete guardrail[J].Journal of Vibration and Shock,2009,28(5):6-9, 26, 200.
27 杨济匡,孔成,肖志. 高速公路双波护栏对客车碰撞的防护性能仿真研究与改进[J]. 公路交通科技,2014,31(10):134-140.
Yang Ji-kuang, Kong Cheng, Xiao Zhi. Simulation and improvement of protective performance of expressway W-beam guardrailagainst bus collisions[J]. Journal of Highway and Transportation Research and Development,2014,31(10):134-140.
28 . 公路护栏安全性能评价标准 [S].
[1] Chen HUA,Run-xin NIU,Biao YU. Methods and applications of ground vehicle mobility evaluation [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(6): 1229-1244.
[2] Wen-jing WU,Yong-bin ZHAN,Li-li YANG,Run-chao CHEN. Coordinated control method of variable speed limit in on⁃ramp area considering safety distance [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(6): 1315-1323.
[3] Wei LI,Hai-sheng SONG,Hao-yu LU,Wen-ku SHI,Qiang WANG,Xiao-jun WANG. Linear identification method of hysteresis characteristic of composite leaf springs [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(4): 829-836.
[4] Xian-tong LI,Wei QUAN,Hua WANG,Peng-cheng SUN,Peng-jin AN,Yong-xing MAN. Route travel time prediction on deep learning model through spatiotemporal features [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 557-563.
[5] Tian-jun FENG,Xue-lu SUN,Jia-sheng HUANG,Xiu-juan TIAN,Xian-min SONG. Two-phase signal intersection delay based on three crossing modes [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 550-556.
[6] Xing-hua LI,Fei-yu FENG,Cheng CHENG,Wei WANG,Peng-cheng TANG. Choice preference analysis and modeling of ridesplitting service [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 578-584.
[7] Hong-fei JIA,Zi-han SHAO,Li-li YANG. Ride⁃sharing matching model and algorithm of online car⁃hailing under condition of uncertain destination [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 564-571.
[8] Yu-xuan WEI,Ming ZHANG,Jia LIU,Shuo LIU,Ming-yu LU,Hong-yu WANG. Buckling performance of variable stiffness composite cylindrical shells based on mode imperfections [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(1): 91-100.
[9] Yong-hui SHANG,Lin-rong XU,Wei-zheng LIU,Yu CAI. Dynamic features of transition section between improved soil and A⁃filled of heavy⁃haul railway [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2128-2136.
[10] Yan-feng JIA,Da-yi QU,Lu LIN,Rong-han YAO,Xiao-long MA. Coordinated speed control of connected mixed traffic flow based on trajectory [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2051-2060.
[11] Zong-wei YAO,Xu-dong GAO,Gang LIU,Qiu-shi BI. Research on working performance of vertical screw stirring mill based on numerical simulations [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1642-1650.
[12] Zheng-lei YU,Li-xin CHEN,Ze-zhou XU,Ren-long XIN,Long MA,Jing-fu JIN,Zhi-hui ZHANG,Shan JIANG. Analysis of mechanical characteristics and recovery characteristics of bionic protective structures based on additive manufacturing [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(4): 1540-1547.
[13] Zheng-lei YU,Ren-long XIN,Li-xin CHEN,Yi-ning ZHU,Zhi-hui ZHANG,Qing CAO,Jing-fu JIN,Jie-liang ZHAO. Load bearing characteristics of honeycomb protection structure [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 1140-1145.
[14] Ya-feng GONG,Yun-ze PANG,Bo WANG,Guo-jin TAN,Hai-peng BI. Mechanical properties of new prefabricated box culvert structure based on road conditions in Jilin Province [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 917-924.
[15] Jin TONG,Zi-bo GAO,Chao HUO,Zi-yang WANG,Yun-hai MA,Zhi-yong CHANG. Effect of Cu nanoparticles on friction and wear of ultra⁃high molecular weight polyethylene with composites at low temperature [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 493-500.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!