Journal of Jilin University(Engineering and Technology Edition) ›› 2023, Vol. 53 ›› Issue (5): 1364-1371.doi: 10.13229/j.cnki.jdxbgxb.20220767

Previous Articles    

Location of electrical changing station of expressway considering stochastic characteristics of road network

Yan-bo LI1(),Bai-song LIU1,Bo-bin YAO1(),Jun-shuo CHEN1,Kai-fa QU2,Qi-sheng WU1,Jie-ning CAO1   

  1. 1.School of Energy and Electrical Engineering,Chang'an University,Xi'an 710064,China
    2.Shandong Transportation Planning and Design Institute Co. ,Ltd,Jinan 250031,China
  • Received:2022-06-20 Online:2023-05-01 Published:2023-05-25
  • Contact: Bo-bin YAO E-mail:ybl@chd.edu.cn;b.b.yao@chd.edu.cn

Abstract:

In this paper, considering the stochastic characteristics of the electric vehicle flow and the initial residual electricity on the path, the extended network theory is introduced to build a mathematical model for the potential location of the power exchange station under the condition of multi-path. Combined with 'elitism', the genetic algorithm is used to solve the location model and obtain the initial location solution. Finally, the statistical analysis method is used to screen the initial solution to get the final optimal location. On this basis, the relationship between electric vehicle mileage and station construction cost, and the relationship between the number of replacement stations and service flow are analyzed. By comparison, the introduction of 'elitism' can significantly reduce the initial construction cost and solution time of the charging pile, while the application of statistical analysis method can not only meet the power demand of the vast majority of vehicle owners in the expressway network, but also effectively reduce the initial cost required for the construction of the station.

Key words: transportation planning and management, the location of electrical changing station, genetic algorithm, electric vehicle, expressways

CLC Number: 

  • U49

Fig.1

Schematic constraint diagram of expressway single path"

Fig.2

Schematic diagram of expansion network of single path p"

Table 1

Symbol definition in model"

符号定 义
P路径集合
D路径节点集合
bm在节点m单位电池库存成本
fm节点m处建立换电站固定成本
k换电站建设节点
tp路径p上电动汽车的随机流量
M(m)节点m处电动汽车剩余行驶里程
umnp扩张网络中边(m,n)的随机流量

Table 2

Flow and implementation of genetic algorithm"

流程名称主要实现方法
编码与解码实数编码、符号编码、二进制编码
产生初始种群随机生成
求解适应度

转换目标函数,变换方式有动态线性变换、

线性变换、对数变换、幂律变换等

选择锦标赛、轮盘赌、随机遍历抽样
交叉多点交叉、单点交叉、均匀交叉
变异离散变异、实值变异
终止条件

最优个体适应度满足预期、适应度不再改变、

迭代次数达到给定值

Fig.3

Complex path network diagram"

Fig.4

Path network diagram after adding alternative points"

Table 3

Numerical results"

续航

里程

引入“精英主义” 遗传算法求解未引入“精英主义” 遗传算法求解
最优目标值 /千元运算时间 /s最优目标值 /千元运算时间 /s
20060 3672166.7870 6422211.36
24043 2132461.2651 2882373.24
28036 7631587.1243 7042465.36
32028 1601898.2235 5492320.76
36016 6251714.6225 2262584.48
40013 5451190.5218 6241214.82
44013 2451409.6416 1032194.44
48011 2731934.9414 1931997.62
50010 9731788.2813 4591820.70

Fig.5

20 random times site selection scheme"

Fig.6

50 random times site selection scheme"

Fig.7

100 random times site selection scheme"

Fig.8

Relationship between mileage and cost"

Fig.9

Construction quantity and service flow of exchange station"

1 杨天宇, 郭庆来, 盛裕杰, 等.系统互联视角下的城域电力-交通融合网络协同[J].电力系统自动化, 2020, 44(11): 1-9.
Yang Tian-yu, Guo Qing-lai, Sheng Yu-jie, et al. Coordination of urban integrated electric power and traffic network from perspective of system interconnection[J]. Automation of Electric Power Systems, 2020, 44(11): 1-9.
2 崔岩, 胡泽春, 段小宇.考虑充电需求空间灵活性的电动汽车运行优化研究综述[J].电网技术, 2022, 46(3): 981-994.
Cui Yan, Hu Ze-chun, Duan Xiao-yu. Review on the electric vehicles operation optimization considering the spatial flexibility of electric vehicles charging demands[J]. Power System Technology, 2022, 46(3): 981-994.
3 谌微微, 许茂增, 邢青松.考虑续航能力的新能源汽车充电站递阶延时布局研究[J].交通运输系统工程与信息, 2020, 20(6): 156-162.
Chen Wei-wei, Xu Mao-zeng, Xing Qing-song. A hierarchical delay layout model for electric vehicle charging stations considering cruising capability[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(6): 156-162.
4 张玮, 张树培, 罗江鹏, 等.电动汽车充电桩排队服务动态优化模型[J].吉林大学学报: 工学版, 2022, 52(5): 1045-1051.
Zhang Wei, Zhang Shu-pei, Luo Jiang-peng, et al. Dynamic optimization model of queuing service for electric vehicle charging piles[J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(5): 1045-1051.
5 盛裕杰, 郭庆来, 刘梦洁, 等.多源数据融合的用户充电行为分析与充电设施规划实践[J].电力系统自动化, 2022, 22(6): 1-24.
Sheng Yu-jie, Guo Qing-lai, Liu Meng-jie, et al. User charging behavior analysis and charging facility planning practice based on multi-source data fusion[J]. Automation of Electric Power Systems, 2022, 22(6): 1-24.
6 Zhang H C, Moura S J, Hu Z C, et al. PEV fast-charging station siting and sizing on coupled transportation and power networks[J]. IEEE Transactions on Smart Grid, 2018, 9(4): 2595-2605.
7 陈维新. 基于电动汽车充电需求的高速公路充电站布局研究[D]. 成都: 西南交通大学交通运输与物流学院, 2021.
Chen Wei-xin. Research on the highway charging station layout based on charging demand of electric vehicles[D]. Chengdu: School of Transportation and Logistics, Southwest Jiaotong University, 2021.
8 Zhang H C, Moura S J, Hu Z C, et al. A second-order cone programming model for planning PEV fast-charging stations[J]. IEEE Transactions on Power Systems, 2018, 33(3): 2763-2777.
9 吴赋章, 杨军, 林洋佳, 等.考虑用户有限理性的电动汽车时空行为特性[J]. 电工技术学报, 2020, 35(7): 1563-1574.
Wu Fu-zhang, Yang Jun, Lin Yang-jia, et al. Research on spatiotemporal behavior of electric vehicles considering the users' bounded rationality[J]. Transactions of China Electrotechnical Society, 2020, 35(7): 1563-1574.
10 龙雪梅, 杨军, 吴赋章, 等.考虑路网-电网交互和用户心理的电动汽车充电负荷预测[J].电力系统自动化, 2020, 44(14): 86-93.
Long Xue-mei, Yang Jun, Wu Fu-zhang, et al. Prediction of electric vehicle charging load considering interaction between road network and power grid and user's psychology[J]. Automation of Electric Power Systems, 2020, 44(14): 86-93.
11 邹云程, 刘昊翔, 龙建成. 考虑出行者异质的多类型充电设施部署优化[J]. 系统工程理论与实践, 2020, 40(11): 2946-2957.
Zou Yun-cheng, Liu Hao-xiang, Long Jian-cheng. Optimizing the location of multi-type charging facilities considering heterogeneous travelers[J]. Systems Engineering-Theory &Practice, 2020, 40(11): 2946-2957.
12 葛少云, 李荣, 韩俊, 等.考虑电动出租车随机概率行为特性的充电站规划[J].电力系统自动化, 2016, 40(4): 50-58.
Ge Shao-yun, Li Rong, Han Jun, et al. Charging Station planning considering probability behavior characteristic of electric tax[J]. Automation of Electric Power Systems, 2016, 40(4): 50-58.
13 Giuseppe N, Antonio P, Salvatore M, et al. Optimal allocation of electric vehicle charging stations in a highway network: Part 1. Methodology and test application[J]. Journal of Energy Storage, 2020, 27: 101102.
14 Cui Q, Weng Y, Tan C W, et al. Electric vehicle charging station placement method for urban areas[J]. IEEE Transactions on Smart Grid, 2019, 10(6): 6552-6565.
15 Wu Y H, Ribberink H. Methodology to estimate the need for direct-current fast-charging stations along highways in canada[J]. Journal of Transportation Engineering Part A: Systems, 2020, 146(10): 04020108.
16 邱荷婷. 基于交通流分配的充电站布局优化研究[D]. 北京: 北京交通大学经济管理学院, 2020.
Qiu He-ting. Research on the layout optimization of charging station based on traffic flow assignment[D]. Beijing: School of Economics and Management, Beijing Jiaotong University, 2020.
17 Ammous M, Belakaria S, Sorour S.Joint delay and cost optimization of in-route charging for on-demand electric vehicles[J]. IEEE Transactions on Intelligent Vehicles, 2020, 5(1): 149-164.
18 惠迎新, 陈嘉伟. 基于改进遗传算法下的挤扩支盘群桩优化方法[J/OL]. [2022-06-20].
19 Li M X, Yang G L, Li X Q, et al. Variable universe fuzzy control of adjustable hydraulic torque converter based on multi-population genetic algorithm[J]. IEEE Access, 2019, 7: 18526655.
20 Luan Y, Tang J. An improved gravity model for passenger flow distribution prediction of new urban rail transit lines[C]∥5th International Conference on Electromechanical Control Technology and Transportation, Nanchang, China, 2020: 487-491.
[1] Shao-hua WANG,Kun CHU,De-hua SHI,Chun-fang YIN,Chun LI. Robust compound coordinated control of HEV based on finite⁃time extended state observation [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1272-1281.
[2] Ying HU,Chun-fu SHAO,Shu-ling WANG,Xi JIANG,Hai-rui SUN. Identification of road riding quality based on shared bike trajectory data [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 1040-1046.
[3] Hong-bo YANG,Wen-ku SHI,Zhi-yong CHEN,Nian-cheng GUO,Yan-yan ZHAO. Multi⁃objective optimization of macro parameters of helical gear based on NSGA⁃Ⅱ [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 1007-1018.
[4] Min MA,Da-wei HU,Lan SHU,Zhuang-lin MA. Resilience assessment and recovery strategy on urban rail transit network [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 396-404.
[5] Zhan-zhong WANG,Ting JIANG,Jing-hai ZHANG. Evaluation of road transportation efficiency based on fuzzy double frontiers network model [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 385-395.
[6] Hong-bo YANG,Wen-ku SHI,Zhi-yong CHEN,Nian-cheng GUO,Yan-yan ZHAO. Optimization of tooth surface modification based on a two-stage reduction gear system [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(7): 1541-1551.
[7] Bin-xiang JIANG,Tong-tong JIANG,Yong-lei WANG. Optimization of consensus algorithm for drug detection block chain based on cultural genetic algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 684-692.
[8] Yong LUO,Yi SUI,Fu-tao SHEN,Qiang SUN,Yun-xiao DENG,Yong-heng WEI. Start up control strategy of plug in hybrid system based on double clutch transmission [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(12): 2765-2777.
[9] Xing-tao LIU,Si-yuan LIN,Ji WU,Yao HE,Xin-tian LIU. Regenerative braking optimization strategy considering battery state of power [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(12): 2796-2805.
[10] Si-feng ZHU,Ming-yang ZHAO,Zheng-yi CHAI. Computing offloading scheme based on particle swarm optimization algorithm in edge computing scene [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(11): 2698-2705.
[11] Cui-yu LI,Ya-meng HU,Ya-wei KANG,De-liang ZHANG. Coordination scheduling of electric vehicle charge and discharge using adaptive genetic algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(11): 2508-2513.
[12] Han LI,Peng DU,Ying DU,Xiao-hui LI. Multi-path routing method for wireless body area network based on genetic algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(11): 2706-2711.
[13] Bi-da ZHANG,Qiang YAN,Lin ZHANG,Hai-rui ZHANG. Charging and battery swapping route planning for electric vehicles based on real-time traffic information [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(10): 2333-2342.
[14] Chuan-hai CHEN,Guo-xiang YAO,Tong-tong JIN,Gui-xiang SHEN,Li-juan YU,Hai-long TIAN. Dynamic modeling and parameter updating of machine tool spindle system based on response surface methodology and genetic algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(10): 2278-2286.
[15] You-qun ZHAO,Yu-hao LI,Hui-fan DENG,Tao LIN,Fen LIN. Stability control of distributed electric vehicle based on Popov hyperstability [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(10): 2225-2233.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!