Journal of Jilin University(Engineering and Technology Edition) ›› 2023, Vol. 53 ›› Issue (2): 396-404.doi: 10.13229/j.cnki.jdxbgxb20220453

Previous Articles     Next Articles

Resilience assessment and recovery strategy on urban rail transit network

Min MA(),Da-wei HU(),Lan SHU,Zhuang-lin MA   

  1. College of Transportation Engineering,Chang'an University,Xi'an 710064,China
  • Received:2022-04-21 Online:2023-02-01 Published:2023-02-28
  • Contact: Da-wei HU E-mail:mm13636811666@126.com;dwhu@chd.edu.cn

Abstract:

In view of the deficiency of existing research on analyzing the resilience of urban rail transit network based on topological network efficiency, a resilience assessment method based on network performance response function is proposed, which is the weighted sum of OD passenger flow loss ratio and network service efficiency loss ratio. The Delphi-entropy weigh method is used to determine the comprehensive weight of two indicators, and a recovery optimization model with the maximum network resilience index is established, and the adaptive genetic algorithm is adopted to solve the developed model. Taking Xi'an rail transit network as an example, four hypothetical perturbance scenarios are proposed considering random attack and intentional attack. The differences of network resilience repair effects of target recovery strategy, random recovery strategy and preference recovery strategy under four hypothetical perturbance scenarios are compared and analyzed. The results show that the target recovery strategy has the best repair effect on rail transit network, followed by preference recovery strategy. Compared with random attack strategy, different recovery strategies have different network resilience under intentional attack strategy. When selecting the sequence of repairing damaged stations, we should not only consider the importance of damaged stations in network topology, but also consider the impact of passenger flow on network performance. Increasing the input of repair resources can shorten the recovery time and improve the repair efficiency, but the increase of repair resources is not proportional to the improvement of network resilience. The research conclusion can provide decision-making basis for the resilience assessment and emergency repair recovery of urban rail transit network.

Key words: engineering of communications and transportation system, rail transit network, resilience assessment, recovery strategy, adaptive genetic algorithm

CLC Number: 

  • U491

Fig.1

System performance changes under disturbance events"

Fig.2

Topological structure of Xi'an rail transit network"

Table 1

Four hypothetical perturbation scenarios"

假设情景攻击策略失效车站生成方案失效车站编号
1随机攻击策略随机生成10个车站4、17、33、55、67、79、91、119、125、141
2蓄意攻击策略1节点度最大的10个车站1、4、10、13、15、23、26、43、48、77
3蓄意攻击策略2节点加权介数最大的10个车站10、13、23、24、25、26、77、119、120、121
4蓄意攻击策略3客流强度最大的10个车站6、8、10、17、18、38、39、42、44、54

Table 2

Station repair sequence and network resilience under different perturbation scenarios with recovery strategies"

扰动情景恢复策略车站修复顺序网络韧性
情景1随机恢复55→17→91→119→67→4→33→141→79→1250.8676
偏好恢复基于车站度4→119→33→17→67→79→125→55→141→910.9000
基于车站重要度17→79→33→119→4→55→125→67→91→1410.8975
目标恢复4→17→79→119→33→55→125→91→141→670.9280
情景2随机恢复23→10→43→15→1→26→4→77→13→480.5972
偏好恢复基于车站度1→4→10→13→15→23→26→43→48→770.6185
基于车站重要度43→15→10→23→48→26→4→13→1→770.6787
目标恢复43→15→48→23→26→10→4→13→1→770.6924
情景3随机恢复119→10→77→25→13→24→120→26→23→1210.8015
偏好恢复基于车站度13→26→23→77→10→119→24→25→121→1200.8715
基于车站重要度10→23→119→26→13→24→25→77→121→1200.9232
目标恢复23→10→119→13→26→77→24→121→25→1200.9421
情景4随机恢复8→42→18→17→10→6→54→39→38→440.8134
偏好恢复基于车站度10→17→42→8→44→38→6→18→54→390.8788
基于车站重要度10→17→42→38→8→6→44→18→54→390.8802
目标恢复10→42→17→38→8→6→44→18→54→390.8811

Fig.3

Resilience recovery curves under four perturbation scenarios"

Fig.4

Impact of different restoration resources on network resilience"

1 Derrible S, Kennedy C. Network analysis of world subway systems using updated graph theory[J] Transportation Research Record, 2009(2112): 17-25.
2 冯国强,李菁.城市轨道交通减排治污效应评估[J].中国人口·资源与环境, 2019, 29(10): 143-151.
Feng Guo-qiang, Li Jing. Assessment of emission reduction effect of urban rail transit[J]. China Population, Resources and Environment, 2019, 29(10): 143-151.
3 侯秀芳, 梅建萍, 左超. 2021年中国内地城轨交通线路概况[J]. 都市快轨交通, 2022, 35(1): 12-16.
Hou Xiu-fang, Mei Jian-ping, Zuo Chao. An overview of urban rail transit lines in the Chinese mainland in 2021[J]. Urban Rapid Rail Transit, 2022, 35(1): 12-16.
4 Holling C S. Resilience and stability of ecological systems[J]. Annual Review of Ecology and Systematics, 1973, 4: 1-23.
5 Berdica K. An introduction to road vulnerability: what has been done, is done and should be done[J]. Transport Policy, 2002, 9(2): 117-127.
6 杨金顺,孙洪运,李林波,等.道路交通系统恢复力研究进展综述[J].交通信息与安全,2014,32(3): 87-93.
Yang Jin-shun, Sun Hong-yun, Li Lin-bo, et al. Review of road transportation system resilience research[J]. Journal of Transportation Information and Safety, 2014, 32(3): 87-93.
7 Bruneau M, Chang S E, Eguchi R T, et al. A framework to quantitatively asses and enhance the seismic resilience of communities[J]. Earthquake Spectra, 2003, 19(4): 733-752.
8 Ayyub B M. Practical resilience metrics for planning, design, and decision making[J]. ASCE-ASME Journal of Risk Uncertain Engineering Systems, Part A: Civil Engineering, 2015, 1(3): 04015008.
9 Zhang D, Du F, Huang H, et al. Resilience assessment of urban rail transit networks: Shanghai metro as an example[J]. Safety Science, 2018, 106: 230-243.
10 张洁斐, 任刚, 马景峰, 等. 基于韧性评估的轨道交通网络修复时序决策方法[J]. 交通运输系统工程与信息, 2020, 2(4): 14-20.
Zhang Jie-fei, Ren Gang, Ma Jing-feng, et al. Decision-making method of repair sequence for metro network based on resilience evaluation[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 2(4): 14-20.
11 黄莺, 刘梦茹, 魏晋果, 等. 基于韧性曲线的城市轨道交通网络恢复策略研究[J]. 灾害学, 2021, 36(1): 32-36.
Huang Ying, Liu Meng-ru, Wei Jin-guo, et al. Research on urban metro network recovery strategy based on resilience curve[J]. Journal of Catastrophology, 2021, 36(1): 32-36.
12 吕彪,管心怡,高自强. 轨道交通网络服务韧性评估与最优恢复策略[J]. 交通运输系统工程与信息, 2021, 21(5): 198-205, 221.
Lv Biao, Guan Xin-yi, Gao Zi-qiang. Evaluation and optimal recovery strategy of metro network service resilience[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(5): 198-205, 221.
13 Nan C, Sansavini G. A quantitative method for assessing resilience of interdependent infrastructures[J]. Reliability Engineering&System Safety, 2017, 157: 35-53.
14 Ouyang M, Dueñas-Osorio L, Min X. A three-stage resilience analysis framework for urban infrastructure systems[J]. Structural Safety, 2012, 36/37: 23-31.
15 张海涛, 靖继鹏. 制造企业综合信息竞争力测度模型的建立[J]. 吉林大学学报: 工学版, 2005, 35(3): 339-342.
Zhang Hai-tao, Jing Ji-peng. Measure model for manufacturing enterprise integrated information competitive power[J]. Journal of Jilin University(Engineering and Technology Edition), 2005, 35(3): 339-342.
16 朱天曈, 丁坚勇, 郑旭. 基于改进TOPSIS法和德尔菲——熵权综合权重法的电网规划方案综合决策方法[J]. 电力系统保护与控制, 2018, 46(12): 91-99.
Zhu Tian-tong, Ding Jian-yong, Zheng Xu. A comprehensive decision-making method for power network planning schemes based on the combination of the improved TOPSIS method with Delphi-entropy weight method[J]. Power System Protection and Control, 2018, 46(12): 91-99.
17 陈国芳, 卫豪. 基于EW-AHP和未确知测度理论的隧道瓦斯风险评价[J]. 有色金属科学与工程, 2021, 12(5): 89-95.
Chen Guo-fang, Wei Hao. Tunnel gas risk assessment based on EW-AHP and unascertained measurement theory[J]. Nonferrous Metals Science and Engineering, 2021, 12(5): 89-95.
18 魏丽英, 李鸣君. 考虑诱导影响的公交优先信号配时模型[J]. 吉林大学学报: 工学版, 2016, 46(3): 777-784.
Wei Li-ying, Li Ming-jun. Bus priority signal timing model considering the influence of traffic guidance[J]. Journal of Jilin University(Engineering and Technology Edition), 2016, 46(3): 777-784.
19 阳光灿,熊禾根.改进遗传算法求解柔性作业车间调度问题[J].计算机仿真,2022,39(2):221-225, 292.
Yang Guang-can, Xiong He-gen.Improved genetic algorithm for flexible job shop scheduling problem[J]. Computer Simulation, 2022, 39(2): 221-225, 292.
20 徐力,刘云华,王启富.自适应遗传算法在机器人路径规划的应用[J]. 计算机工程与应用, 2020, 56(18): 36-41.
Xu Li, Liu Yun-hua, Wang Qi-fu. Application of adaptive genetic algorithm in robot path planning[J]. Computer Engineering and Applications, 2020, 56(18): 36-41.
21 张超群, 郑建国, 钱洁. 遗传算法编码方案比较[J]. 计算机应用研究, 2011, 28(3): 819-822.
Zhang Chao-qun, Zheng Jian-guo, Qian Jie, Comparison of coding schemes for genetic algorithms[J]. Application Research of Computers, 2011, 28(3): 819-822.
22 周伟, 李敏, 丘铭军, 等. 基于改进遗传算法的车身板件厚度优化[J]. 清华大学学报: 自然科学版, 2022, 62(3): 523-532.
Zhou Wei, Li Min, Qiu Ming-jun, et al. Vehicle body panel thickness optimization by a genetical algorithm [J]. Journal of Tsinghua University(Science and Technology), 2022, 62(3): 523-532.
[1] Jing WANG,Feng WAN,Chun-jiao DONG,Chun-fu SHAO. Modelling on catchment area and attraction intensity of urban rail transit stations [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 439-447.
[2] Song FANG,Jian-xiao MA,Gen LI,Ling-hong SHEN,Chu-bo XU. Traffic risk analysis of moving work zone on right lane of city expressway [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1786-1791.
[3] Song-xue GAI,Xiao-qing ZENG,Xiao-yuan YUE,Zi-hao YUAN. Parking guidance model based on user and system bi⁃level optimization algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(6): 1344-1352.
[4] Hong-feng XU,Hong-jin CHEN,Dong ZHANG,Qian-hui LU,Na AN,Xian-cai Geng. Fully⁃actuated signal timing technique for isolated signalized intersections in connected vehicle environment [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(6): 1324-1336.
[5] Guo-zhu CHENG,Qiu-yue SUN,Yue-bo LIU,Ji-long CHEN. Cut⁃in behavior model based on game theoretic approach on urban roads [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(12): 2839-2844.
[6] Heng-yan PAN,Wen-hui ZHANG,Bao-yu HU,Zun-yan LIU,Yong-gang WANG,Xiao ZHANG. Construction and robustness analysis of urban weighted subway⁃bus composite network [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(11): 2582-2591.
[7] Zhuang-lin MA,Shan-shan CUI,Da-wei HU. Urban residents' low⁃carbon travel intention after implementation of driving restriction policy [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(11): 2607-2617.
[8] Cui-yu LI,Ya-meng HU,Ya-wei KANG,De-liang ZHANG. Coordination scheduling of electric vehicle charge and discharge using adaptive genetic algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(11): 2508-2513.
[9] Jing-xian WU,Hua-peng SHEN,Yin HAN,Min YANG. Residents' commuting time model under the nonlinear impact of urban built environment [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(11): 2568-2573.
[10] Jie MA,Jia-jun HUANG,Jun TIAN,Yang-hui DONG. Simulation modeling of pedestrian target decision⁃making in evacuation process in transfer corridors of subway stations [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(11): 2600-2606.
[11] Feng XUE,Chuan-lei HE,Qian HUANG,Jian LUO. Coordination degree of multimodal rail transit network [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2040-2050.
[12] Bo PENG,Yuan-yuan ZHANG,Yu-ting WANG,Ju TANG,Ji-ming XIE. Automatic traffic state recognition from videos based on auto⁃encoder and classifiers [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 886-892.
[13] Dian-hai WANG,Xin-yi SHEN,Xiao-qin LUO,Sheng JIN. Offset optimization with minimum average vehicle delay [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 511-523.
[14] Xian-min SONG,Ming-ye ZHANG,Zhen-jian LI,Xin WANG,Ya-nan ZHANG. Setting of dynamic bus lane and its simulation analysis and evaluation [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1677-1686.
[15] Hong-fei JIA,Xin-ru DING,Li-li YANG. Bi-level programming model for optimization design of tidal lane [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 535-542.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Shoutao, LI Yuanchun. Autonomous Mobile Robot Control Algorithm Based on Hierarchical Fuzzy Behaviors in Unknown Environments[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] Liu Qing-min,Wang Long-shan,Chen Xiang-wei,Li Guo-fa. Ball nut detection by machine vision[J]. 吉林大学学报(工学版), 2006, 36(04): 534 -538 .
[3] Li Hong-ying; Shi Wei-guang;Gan Shu-cai. Electromagnetic properties and microwave absorbing property
of Z type hexaferrite Ba3-xLaxCo2Fe24O41
[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[4] Li Yue-ying,Liu Yong-bing,Chen Hua . Surface hardening and tribological properties of a cam materials[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .
[5] Nie Jian-jun,Du Fa-rong,Gao Feng . Finite time thermodynamics of real combined power cycle operating
between internal combustion engine and Stirling engine with heat leak
[J]. 吉林大学学报(工学版), 2007, 37(03): 518 -0523 .
[6] Tang Xin-xing,Zhao Ding-xuan,Huang Hai-dong,Ai Xue-zhong,Feng Shi-zhu . Modified stereo vision calibration method for construction robot
[J]. 吉林大学学报(工学版), 2007, 37(02): 391 -0395 .
[7] Wang Chao,Song Ke-zhu,Tang Jin . High performance data acquisition system for marine seismic survey[J]. 吉林大学学报(工学版), 2007, 37(01): 168 -172 .
[8] . [J]. 吉林大学学报(工学版), 2007, 37(06): 1284 -1287 .
[9] Yang Qing-fang, Chen Lin . Division approach of traffic control work zone[J]. 吉林大学学报(工学版), 2006, 36(增刊2): 139 -142 .
[10] . [J]. 吉林大学学报(工学版), 2007, 37(06): 1455 -1459 .