Journal of Jilin University(Engineering and Technology Edition) ›› 2023, Vol. 53 ›› Issue (8): 2339-2349.doi: 10.13229/j.cnki.jdxbgxb.20211151

Previous Articles    

Statistical damage model of frozen expansive soil considering temperature effect

Xin-yu LI1,2,3(),Xian-zhang LING1,2,3(),Na QU1   

  1. 1.School of Civil Engineering,Harbin Institute of Technology,Harbin 150090,China
    2.Chongqing Research Institute,Harbin Institute of Technology,Chongqing 401135,China
    3.Heilongjiang Research Center for Rail Transit Engineering in Cold Regions,Harbin Institute of Technology,Harbin 150090,China
  • Received:2021-11-02 Online:2023-08-01 Published:2023-08-21
  • Contact: Xian-zhang LING E-mail:18B933025@stu.hit.edu.cn;lingxianzhang@hit.edu.cn

Abstract:

In order to study the low temperature mechanical properties of expansive soil in the alpine deep seasonal permafrost region, the consolidation undrained shear tests under low confining pressure in different freezing temperatures, moisture content and freeze-thaw cycles were carried out. The results show that the stress-strain curves of the frozen expansive soil change from hardening to softening with the decrease of freezing temperature and initial water content. The effect of freeze-thaw cycles intensifies the softening effect and promotes the sensitivity of confining pressure. When the freezing temperature is within the frozen zone, the shear process of frozen expansive soil can be divided into four stages with the increase of axial strain: elastic stage, plastic shear shrinkage stage, plastic dilatancy stage and failure stage. The elastic modulus of frozen expansive soil increases with decreasing temperature and presents a good linear correlation. The statistical damage model of frozen expansive soil considering the influence of temperature was deduced, and the law of macroscopic mechanical properties deterioration of frozen expansive soil was revealed.

Key words: frozen expansive soil, elastic modulus, stress-strain relation, damage threshold, statistical damage model

CLC Number: 

  • TU443

Table 1

Experimental scheme of triaxial test"

试样编号试验温度/℃含水率/%冻融循环次数围压/kPa
1#-121030
2#-421030
3#-721030
4#-1021030
5#-121045
6#-421045
7#-721045
8#-1021045
9#-121060
10#-421060
11#-721060
12#-1021060
13#-418045
14#-424045
15#-4211030
16#-4211045
17#-4211060
18#2021030
19#2021060
20#2021090
21#-4210150
22#-4210250

Fig.1

Stress-strain relations of samples under different freezing temperatures"

Fig.2

Crack development after the test"

Fig.3

Stress-strain relations of samples under different initial water content"

Fig.4

Stress-strain relations of samples under different freeze-thaw cycle"

Fig.5

Volumetric strain-axial strain relations of samples under frozen temperature"

Fig.6

Stress and volumetric strain-axial strain relations of samples under frozen temperature"

Fig.7

Curve of freezing temperature-elastic modulus of expansive soil"

Fig.8

Damage variable under different working conditions"

Fig.9

Typical stress-strain relations of frozen soil"

Table 2

Statistical damage model parameters of frozen expansive soil"

温度/℃围压/kPaαmF0
-4300.190.431048.36
450.531577.71
600.431313.84
-7300.190.36686.85
450.391002.69
600.401162.08
-10300.200.33817.41
450.35993.12
600.33890.87

Fig.10

Comparison of triaxial test values and model predicted values under different working conditions"

Fig.11

Comparison of different prediction models"

1 Luo J, Tang L, Ling X Z, et al. Experimental and analytical investigation on frost heave characteristics of an unsaturated moderately expansive clay[J]. Cold Regions Science and Technology, 2018, 155:343-353.
2 孔令伟, 周葆春, 白颢, 等. 荆门非饱和膨胀土的变形与强度特性试验研究[J]. 岩土力学, 2010, 31(10):3036-3042.
Kong Ling-wei, Zhou Bao-chun, Bai Hao, et al. Experimental study of deformation and strength characteristics of Jingmen unsaturated expansive soil[J]. Rock and Soil Mechanics, 2010, 31(10): 3036-3042.
3 卢再华, 陈正汉, 蒲毅彬. 膨胀土干湿循环胀缩裂隙演化的CT试验研究[J]. 岩土力学, 2002, 23(4):417-422.
Lu Zai-hua, Chen Zheng-han, Pu Yi-bin. A CT study on the crack evolution of expansive soil during drying and wetting cycles[J]. Rock and Soil Mechanics, 2002, 23(4): 417-422.
4 蔡正银, 朱洵, 黄英豪, 等. 湿干冻融耦合循环作用下膨胀土裂隙演化规律[J]. 岩土工程学报, 2019, 41(1):1381-1389.
Cai Zheng-yin, Zhu Xun, Huang Ying-hao, et al. Evolution rules of fissures in expansive soils under cyclic action of coupling wetting-drying and freeze-thaw[J]. Chinese Journal of Geotecnial Engineering, 2019, 41(1): 1381-1389.
5 蔡正银, 朱洵, 黄英豪, 等. 冻融过程对膨胀土裂隙演化特征的影响[J]. 岩土力学, 2019, 40(9): 4555-4563.
Cai Zheng-yin, Zhu Xun, Huang Ying-hao, et al. Influences of freeze-thaw process on evolution characteristics of fissures in expansive soils[J]. Rock and Soil Mechanics, 2019, 40(9): 4555-4563.
6 韩春鹏,田家忆,张建,等. 干湿循环下纤维加筋膨胀土裂隙特性分析[J].吉林大学学报:工学版, 2019, 49(2): 392-400.
Han Chun-peng, Tian Jia-yi, Zhang Jian, et al. Analysis of crack characteristics of fiber-reinforced expansive soil under wetting-drying cycle[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(2): 392-400.
7 Tang L, Cong S Y, Geng L, et al. The effect of freeze-thaw cycling on the mechanical properties of expansive soils[J]. Cold Regions Science and Technology, 2018, 145: 197-207.
8 Lu Y, Liu S H. Cracking in an expansive soil under freeze-thaw cycles[J]. Sciences in Cold and Arid Regions, 2017, 9(4): 392-397.
9 徐永福, 陈永战, 刘松玉, 等. 非饱和膨胀土的三轴试验研究[J]. 岩土工程学报, 1998, 20(3):14-18.
Xu Yong-fu, Chen Yong-zhan, Liu Song-yu, et al. Triaxial text on unsaturated expansive soils[J]. Chinese Journal of Geotecnial Engineering, 1998, 20(3): 14-18.
10 徐永福. 对“非饱和膨胀土的三轴试验研究”讨论的答复[J]. 岩土工程学报, 1998, 20(6):128-129.
Xu Yong-fu. Response to discussion on “Triaxial text on unsaturated expansive soils”[J]. Chinese Journal of Geotecnial Engineering, 1998, 20(6): 128-129.
11 蒋明镜, 本乡隆夫. 对“非饱和膨胀土的三轴试验研究”的讨论[J]. 岩土工程学报, 1998, 20(6):128.
Jiang Ming-jing, Takao Own. Discussion on “Triaxial text on unsaturated expansive soils”[J]. Chinese Journal of Geotecnial Engineering, 1998, 20(6): 128.
12 韩华强, 陈生水, 郑澄锋. 非饱和膨胀土强度及变形特性试验研究[J]. 岩土工程学报, 2008, 30(12):1872-1876.
Han Hua-qiang, Chen Sheng-shui, Zheng Chengfeng. Experimental study on strength and deformation of unsaturated expansive soils[J]. Chinese Journal of Geotecnial Engineering, 2008, 30(12): 1872-1876.
13 李兆宇, 张滨. 冻结膨胀土应力-应变关系试验研究[J]. 冰川冻土, 2014, 36(4): 902-906.
Li Zhao-yu, Zhang Bin. Experimental study of stress-stain relationships of frozen expansive soil[J]. Journal of Glaciology and Geocryology, 2014, 36(4): 902-906.
14 许雷, 薛洋, 鲁洋, 等. 不同冻结温度条件下膨胀土冻融循环试验[J]. 水资源与水工程学报, 2016, 27(5):189-193.
Xu Lei, Xue Yang, Lu Yang, et al. Test of freeze-thaw cycle of expansive soil under condition of different freezing temperatures[J]. Journal of Water Resources & Water Engineering, 2016, 27(5): 189-193.
15 张勇敢, 鲁洋, 刘斯宏, 等. 基于巴西劈裂试验的冻结膨胀土拉伸特性研究[J]. 岩土工程学报,2021,43(11):2046-2054.
Zhang Yong-gan, Lu Yang, Liu Si-hong, et al. Experimental study on tensile strength of frozen expansive soils based on Brazilian splitting tests[J]. Chineae Journal of Geotechnical Engineering,2021, 43(11):2046-2054.
16 卢再华, 陈正汉, 蒲毅彬. 原状膨胀土剪切损伤演化的定量分析[J]. 岩石力学与工程学报, 2004, 23(9):1428-1432.
Lu Zai-hua, Chen Zheng-han, Pu Yi-bin. Quantitative analysis on damage evolution of intact expansive soil during triaxial shearing test[J]. Chineese Journal of Rock Mechanics and Engineering, 2004, 23(9):1428-1432.
17 程明书, 汪时机, 张雅倩, 等. 膨胀土损伤变量不同表征方法评价的试验研究[J]. 岩土力学, 2015, 36(10):2892-2898.
Cheng Ming-shu, Wang Shi-ji, Zhang Ya-qian, et al. Experimental study of assessment of different characterization methods of expansive soil damage[J]. Rock and Soil Mechanics, 2015, 36(10): 2892-2898.
18 杨明辉, 孙龙, 赵明华, 等. 基于统计损伤理论的非饱和土简易本构模型[J]. 水文地质工程地质, 2015, 42(3):43-48, 58.
Yang Ming-hui, Sun Long, Zhao Ming-hua, et al. A simplified unsaturated soil constitutive model based on statistical damage theory[J]. Hydrogeology & Engineering Geology, 2015, 42(3):43-48, 58.
19 李向东, 罗晓辉. 非饱和土损伤模型与应用[J]. 岩土力学, 2009, 30():114-118.
Li Xiang-dong, Luo Xiao-hui. Damage model of unsaturated soil and its application[J]. Rock and Soil Mechanics, 2009, 30(Sup.2):114-118.
20 Tang L, Cong S Y, Ling X Z, et al. A unified formulation of stress-strain relations considering micro-damage for expansive soils exposed to freeze-thaw cycles[J]. Cold Regions Science and Technology, 2018, 153:164-171.
21 赵顺利, 邓伟杰, 路新景, 等. 基于自然应变损伤模型的膨胀土冻融损伤分析[J]. 岩土工程学报, 2020, 42():127-131.
Zhao Shun-li, Deng Wei-jie, Lu Xin-jing, et al. Freeze-thaw damage analysis of expansive soils based on natural strain damage model[J]. Chinese Journal of Geotecnial Engineering, 2020, 42(Sup.1):127-131.
22 , 铁路工程土工试验规程 [S].
23 Lee W, Bohra N C, Altschaeffl A G, et al. Resilient modulus of cohesive soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1997, 123(2):131-136.
24 曲娜. 高寒区膨胀土特性及变形损伤研究[D]. 哈尔滨: 哈尔滨工业大学土木工程学院, 2019.
Qu Na. Experimnetal investigation on the properties and deformation damage of expansive soils at high sltitude and cold regions[J]. Harbin: School of Civil Engineering, Harbin Institute of Technology, 2019.
25 余寿文, 冯西桥. 损伤力学[M]. 北京: 清华大学出版社, 1997.
26 周永强, 盛谦, 刘芳欣, 等. 一种修正的Drucker-Prager屈服准则[J]. 岩土力学, 2016, 37(6):1657-1664.
Zhou Yong-qiang, Sheng Qian, Liu Fang-xin, et al. A study of modified Drucker-Prager yield criterion[J]. Rock and Soil Mechanics, 2016, 37(6):1657-1664.
27 文畅平,任睆遐.基于Lade模型的生物酶改良膨胀土双屈服面本构关系[J]. 吉林大学学报: 工学版, 2021, 51(5): 1716-1723.
Wen Chang-ping, Ren Huan-xia. Constitutive relation with double yield surface of bioenzyme-treated expansive soil based on Lade model[J]. Journal of Jilin University (Engineering and Technology Edition), 2021, 51(5): 1716-1723.
[1] Chao XIE,Qi-cai WANG,Ben-tian YU,Sheng LI,Xiao-xu LIN,Zhi-ming LU. Determination of elastic modulus by atomic force microscopy and microstructure analysis for polyurethane coating film [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1322-1330.
[2] Ping JIANG,Lin ZHOU,Tian-hao MAO,Jun-ping YUAN,Wei WANG,Na LI. Damage model and time effect of cement⁃modified waste slurry [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(12): 2874-2882.
[3] Peng-hui WANG,Hong-xia QIAO,Qiong FENG,Hui CAO,Shao-yong WEN. Durability model of magnesium oxychloride-coated reinforced concrete under the two coupling factors [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 191-201.
[4] XU Hong, LIU Ya-nan, YU Ting, GU Zheng-wei, LI Xiang-ji, ZHANG Zhi-qiang. Inelastic recovery behavior and microscopic mechanism of high strength DP780 steel during cyclic loading-unloading [J]. 吉林大学学报(工学版), 2017, 47(1): 191-198.
[5] ZHAO Hong-wei, DONG Xiao-long, ZHANG Lin, HU Xiao-li. Determination of the elastic moduli of bulk materials by four-point bending automatic test [J]. 吉林大学学报(工学版), 2016, 46(1): 140-145.
[6] ZHAO Yu, LI Yan-he, ZHANG Pei, ZHAO Ke, LIU Wei-chao. Experimental study of the dynamic characteristics of clay [J]. 吉林大学学报(工学版), 2015, 45(6): 1791-1797.
[7] YANG Ai-wu,ZHOU Jin,KONG Ling-wei. Experiment on mechanical properties of stabilized soft dredger fill [J]. 吉林大学学报(工学版), 2014, 44(3): 661-667.
[8] LU Jin-Zhong, LUO Kai-Yu, CHENG Ye-Jian, YIN Su-Min, ZHANG Chao-Yang, ZHONG Jun-Wei. Diaphanous mechanism and damage threshold of liquid crystal mask by nslaser penetration [J]. 吉林大学学报(工学版), 2010, 40(05): 1288-1291.
[9] Jin Man, Jiang Zhong-hao, Lian Jian-she . Calculation and prediction of critical elastic modulus of short fiberreinforced metal matrix composites [J]. 吉林大学学报(工学版), 2006, 36(增刊2): 1-05.
[10] Jin Man, Jiang Zhong-hao, Lian Jian-she . Calculation and prediction of critical elastic modulus of short fiberreinforced metal matrix composites [J]. 吉林大学学报(工学版), 2006, 36(suppl.2): 1-5.
[11] ZHU Xing-hua, HOU Ya-jun, SHANG Yu. Investigation on trabecular bone rigidity based on homogenization theory [J]. 吉林大学学报(工学版), 2004, (2): 169-173.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!