Journal of Jilin University(Engineering and Technology Edition) ›› 2022, Vol. 52 ›› Issue (12): 2874-2882.doi: 10.13229/j.cnki.jdxbgxb20210430

Previous Articles     Next Articles

Damage model and time effect of cement⁃modified waste slurry

Ping JIANG1,2(),Lin ZHOU1,Tian-hao MAO1,Jun-ping YUAN2,Wei WANG1,Na LI1()   

  1. 1.School of Civil Engineering,Shaoxing University,Shaoxing 312000,China
    2.Key Laboratory of Geomechanics and Embankment Engineering,Ministry of Education,Hohai University,Nanjing 210098,China
  • Received:2021-05-13 Online:2022-12-01 Published:2022-12-08
  • Contact: Na LI E-mail:jiangping@usx.edu.cn;lina@usx.edu.cn

Abstract:

Through the unconfined compressive strength test, the stress-strain curve, unconfined compressive strength, and elastic modulus of cement-modified slurry (CMS) were analyzed, and the time effect model of CMS elastic modulus was established. Based on damage mechanics, a particle swarm optimization (PSO) algorithm was used to identify random field parameters, a CMS mesoscopic random damage model was established, and a random field parameter time effect model was proposed. The results show that: ①the stress-strain curve of CMS is a softening curve, the optimal cement content is 20%, and the elastic modulus is a function of cement content and curing time. ②The mesoscopic random damage model can describe the stress-strain relationship of CMS, and the random field parameter λ has a functional relationship with the curing time. ③The macroscopic stress-strain characteristics of CMS can be explained from the perspective of meso-random damage through the damage variable D and strain evolution.

Key words: geotechnical engineering, cement-modified slurry(CMS), unconfined compression strength(UCS), elastic modulus, time effect, stochastic damage model

CLC Number: 

  • TU447

Fig.1

Stress-strain curve"

Table 1

Unconfined compressive strength growth rate of CMS with different cement content"

水泥掺量/%无侧限抗压强度增长率 η
7 d14 d28 d56 d90 d120 d150 d180 d
50.380.711.001.331.631.721.731.78
100.550.811.001.121.421.451.491.52
150.590.831.001.211.321.411.441.48
200.530.811.001.131.271.341.361.37
250.650.801.001.171.341.391.421.47

Table 2

Theoretical value of CMS elasticmodulus"

水泥掺量/%弹性模量
7 d14 d28 d56 d90 d120 d150 d180 d
53.510192327312829
10516273245403733
15927374968676159
201740446483808474
2529455875101918675

Fig.2

Curves of elastic modulus with time"

Fig.3

Prediction-measured data correlation fit graph"

Fig.4

Relationship between curing time and parameter λ"

Fig.5

Comparison of CMS meso-random damage constitutive model and experimental result curve"

Fig.6

Mesoscopic damage evolution"

1 房凯, 张忠苗, 刘兴旺, 等. 工程废弃泥浆污染及其防治措施研究[J]. 岩土工程学报, 2011, 33(): 238-241.
Fang Kai, Zhang Zhong-miao, Liu Xing-wang, et al. Pollution of construction waste slurry and prevention measures[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(Sup.2): 238-241.
2 Zhang Z M, Fang K, Luo J C, et al. Study on zero discharge treatment technology of waste bored pile slurry[J]. Advanced Materials Research, 2011, 261: 1355-1359.
3 Linares-Unamunzaga A, Pérez-Acebo H, Rojo M, et al. Flexural strength prediction models for soil–cement from unconfined compressive strength at seven days[J]. Materials, 2019, 12(3): No.387.
4 Liu Y, Hu J, Li Y P, et al. Statistical evaluation of the overall strength of a soil-cement column under axial compression[J]. Construction and Building Materials, 2017, 132: 51-60.
5 Kawasaki T, Niina A, Saitoh S, et al. Deep mixing method using cement hardening agent[C]∥Proc 10th International Conference on Soil Mechanics and Foundation Engineering, Stockholm, Sweden, 1981:721-724.
6 Mahedi M, Cetin B, Cement White D., lime, and fly ashes in stabilizing expansive soils : performance evaluation and comparison[J]. Journal of Materials in Civil Engineering, 2020, 32(7): No.04020177.
7 Yoobanpot N, Jamsawang P, Horpibulsuk S. Strength behavior and microstructural characteristics of soft clay stabilized with cement kiln dust and fly ash residue[J]. Applied Clay Science, 2017, 141: 146-156.
8 Jiang P, Mao T H, Li N, et al. Characterization of short-term strength properties of fiber/cement-modified slurry[J]. Advances in Civil Engineering, 2019, 2019: 1-9.
9 林枫, Christian Meyer. 硬化水泥浆体弹性模量细观力学模型[J]. 复合材料学报, 2007(2): 184-189.
Lin Feng, Christian Meyer. Micromechanics model for the effective elastic properties of hardened cement pastes[J]. Acta Materiae Compositae Sinica, 2007(2): 184-189.
10 Subramaniam K, Wang X J. Ultrasonic shear wave reflection method for direct determination of porosity and shear modulus in early-age cement paste and mortar[J]. Journal of Engineering Mechanics, 2016, 142(9): 04016057.
11 Diambra A, Ibraim E. Fibre-reinforced sand: interaction at the fibre and grain scale[J]. Géotechnique, 2015, 65(4): 296-308.
12 Haecker C J, Garboczi E J, Bullard J W, et al. Modeling the linear elastic properties of portland cement paste[J]. Cement and Concrete Research, 2015, 35(10): 1948-1960.
13 宁宝宽. 环境侵蚀下水泥土的损伤破裂试验及其本构模型[D]. 沈阳:东北大学资源与土木工程学院, 2006.
Ning Bai-kuan. Experiments and its constitutive model of cement-mixed soil under environmental erosion[D]. Shenyang: College of Resources and Civil Engineering, Northeastern University, 2006.
14 Chen S l, Ning B K, Bao W B . et al. A damage constitutive model of cemented soil on meso-fracture process testing[J]. Rock and Soil Mechanics, 2007, 28(1): 93-96.
15 Wan K, Xue X. In situ compressive damage of cement paste characterized by lab source X-ray computer tomography[J]. Materials Characterization, 2013, 82: 32-40.
16 Zhou H, Li J, Spencer B F. Multiscale random Fields-based damage modeling and analysis of concrete structures[J]. Journal of Engineering Mechanics, 2019, 145(7): No. 04019045.
17 宋小园,申向东,李红云, 等. 掺矿粉水泥砂浆早期弹性模量的研究[J]. 硅酸盐通报, 2013, 32(10): 2138-2142.
Song Xiao-yuan, Shen Xiang-dong, Li Hong-yun, et al. Study on early-age elastic modulus of cement mortar with mineral powder dosage[J]. Bulletin of The Chinese Ceramic Society, 2013, 32(10): 2138-2142.
18 李杰, 张其云. 混凝土随机损伤本构关系[J]. 同济大学学报:自然科学版, 2001(10): 1135-1141.
Li Jie, Zhang Qi-yun. Study of stochastic damage constitutive relationship for concrete material[J]. Journal of Tongji University, 2001(10): 1135-1141.
19 李杰, 卢朝辉, 张其云. 混凝土随机损伤本构关系——单轴受压分析[J]. 同济大学学报:自然科学版, 2003(5): 505-509.
Li Jie, Lu Zhao-hui, Zhang Qi-yun. Study on stochastic damage constitutive law for concrete material subjected to uniaxial compressive stress[J]. Journal of Tongji Nniversity, 2003(5): 505-509.
20 李杰, 任晓丹. 混凝土随机损伤力学研究进展[J]. 建筑结构报, 2014, 35(4): 20-29.
Li Jie, Ren Xiao-dan. Recent developments on stochastic damage mechanics for concrete[J]. Journal of Building Structures, 2014, 35(4): 20-29.
21 Kandarpa S, Kirkner D J. Stochastic damage model for brittle materiel subjected to monotonic loading[J]. Journal of Engineering Mechanics, 1996,126(8): 788-795.
22 李杰,吴建营, 陈建兵. 混凝土随机损伤力学[M]. 北京:科学出版社, 2014.
23 秦静, 郑德, 裴毅强, 等. 基于PSO-GPR的发动机性能与排放预测方法[J]. 吉林大学学报:工学版, 2022, 52(7): 1489-1498.
Qin Jing, Zheng De, Pei Yi-qiang, et al. Engine performance and emission prediction method based on PSO-GPR[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(7): 1489-1498.
24 Xue B, Zhang M, Browne W N. Particle swarm optimization for feature selection in classification: a multi-objective approach.[J]. IEEE Trans Cybern, 2013, 43(6): 1656-1671.
25 Mohammad K, Mohd R T, Ahmed E S, et al. Modified particle swarm optimization for optimum design of spread footing and retaining wall[J]. Journal of Zhejiang University Science A, 2011, 12(6):3-15.
[1] Liang TANG,Pan SI,Jie CUI,Xian-zhang LING,Xiao-feng MAN. Pseudo-static analysis method of pile group earthquake response in liquefying mild inclined sloping ground [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(4): 847-855.
[2] Fei ZHANG,Yu-ming ZHU,Shang-chuan YANG,Shu-mao WANG. Emission mitigation analysis of geosynthetic⁃reinforced walls [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 631-637.
[3] Wen-bin TAO,Jun-ling HOU,Tie-lin CHEN,Bin TANG. Mechanical analysis of full⁃length anchorage with high pretension post⁃tensioning method [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 631-640.
[4] Deng-hui GAO,Yi-chuan XING,Min-xia GUO,Ai-jun ZHANG,Xian-tao WANG,Bao-hong MA. Modified hyperbola model of interface between unsaturated remolded loess and concrete [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 156-164.
[5] Peng-hui WANG,Hong-xia QIAO,Qiong FENG,Hui CAO,Shao-yong WEN. Durability model of magnesium oxychloride-coated reinforced concrete under the two coupling factors [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 191-201.
[6] GU Hai-dong,LUO Chun-hong. Experiment on soil arching effect of pit supporting structure with scattered row piles and soil nail wall [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1712-1724.
[7] XU Hong, LIU Ya-nan, YU Ting, GU Zheng-wei, LI Xiang-ji, ZHANG Zhi-qiang. Inelastic recovery behavior and microscopic mechanism of high strength DP780 steel during cyclic loading-unloading [J]. 吉林大学学报(工学版), 2017, 47(1): 191-198.
[8] ZHAO Hong-wei, DONG Xiao-long, ZHANG Lin, HU Xiao-li. Determination of the elastic moduli of bulk materials by four-point bending automatic test [J]. 吉林大学学报(工学版), 2016, 46(1): 140-145.
[9] ZHAO Yu, LI Yan-he, ZHANG Pei, ZHAO Ke, LIU Wei-chao. Experimental study of the dynamic characteristics of clay [J]. 吉林大学学报(工学版), 2015, 45(6): 1791-1797.
[10] YU Ming, GAO Qing, QIAO Guang, LI Ming, MA Chun-qiang, JIANG Yan . Time effect of heat energy storage in earth energy application
[J]. 吉林大学学报(工学版), 2009, 39(02): 321-0325.
[11] Jin Man, Jiang Zhong-hao, Lian Jian-she . Calculation and prediction of critical elastic modulus of short fiberreinforced metal matrix composites [J]. 吉林大学学报(工学版), 2006, 36(增刊2): 1-05.
[12] Jin Man, Jiang Zhong-hao, Lian Jian-she . Calculation and prediction of critical elastic modulus of short fiberreinforced metal matrix composites [J]. 吉林大学学报(工学版), 2006, 36(suppl.2): 1-5.
[13] ZHU Xing-hua, HOU Ya-jun, SHANG Yu. Investigation on trabecular bone rigidity based on homogenization theory [J]. 吉林大学学报(工学版), 2004, (2): 169-173.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Huang Zhiqiang , Wang Shuxun , Wang Bo. New Method for 4D Parameters Estimation in Nearfield Sources[J]. 吉林大学学报(工学版), 2006, 36(01): 72 -0076 .
[2] WANG Sheng-Sheng, WANG Zhao-Dan, LIU Da-You, LI Xin, ZHANG Hui-Jie. Detailed topological relation model of directed line objects[J]. 吉林大学学报(工学版), 2009, 39(05): 1292 -1296 .
[3] LU Jin-Zhong, LUO Kai-Yu, CHENG Ye-Jian, YIN Su-Min, ZHANG Chao-Yang, ZHONG Jun-Wei. Diaphanous mechanism and damage threshold of liquid crystal mask by nslaser penetration[J]. 吉林大学学报(工学版), 2010, 40(05): 1288 -1291 .
[4] Liu Xiao-xiao,Yao Jun,Ma Guang-sheng . Study on advancing timing characterization in VLSI circuits[J]. 吉林大学学报(工学版), 2007, 37(03): 621 -0624 .
[5] YAO Guo-feng,GAO Xue-fei . Controllability of structure with repeated eigenvalues[J]. 吉林大学学报(工学版), 2008, 38(06): 1359 -1365 .
[6] YU Fan-Hua, LIU Ren-Yun, ZHOU Chun-Guang. Structural damage detection based on residual force vector method and particle swarm algorithm[J]. 吉林大学学报(工学版), 2010, 40(增刊): 339 -0343 .
[7] LIU Li, LIU Ping-ping, WEI Jia. Semi-supervised dimensionality reduction algorithm applying in face data with side information[J]. 吉林大学学报(工学版), 2011, 41(增刊1): 189 -193 .
[8] FANG Bing, ZHANG Lei, QU Xing-tian, ZHAO Ji. Theoretical and experimental research of stiffness of angular contact ball bearing[J]. , 2012, 42(04): 840 -844 .
[9] LIN Xiang-yu, TIAN Xiang, CHEN Yao-wu. No-reference video quality assessment based on distortion estimation[J]. 吉林大学学报(工学版), 2013, 43(01): 212 -217 .
[10] Zhang Yu-hua, Zhu Yan-he, Zhao Jie, Ren Zong-wei . Self-reconfigurable modular robot and its motion design[J]. 吉林大学学报(工学版), 2007, 37(04): 925 -929 .