Journal of Jilin University(Engineering and Technology Edition) ›› 2023, Vol. 53 ›› Issue (9): 2649-2658.doi: 10.13229/j.cnki.jdxbgxb.20230140

Previous Articles     Next Articles

Blind remote sensing image deblurring algorithm based on Gaussian curvature and reweighted graph total variation

Zhi-dan CAI1,2(),Ming FANG1(),Zhe LI2,Jia-lu XU2   

  1. 1.School of Artificial Intelligence,Changchun University of Science and Technology,Changchun 130022,China
    2.School of Mathematics and Statistics,Changchun University of Science and Technology,Changchun 130022,China
  • Received:2023-02-17 Online:2023-09-01 Published:2023-10-09
  • Contact: Ming FANG E-mail:1261046008@qq.com;fangming245680@126.com

Abstract:

To tackle the motion blur in the process of acquiring remote sensing images, an algorithm for blind deblurring of remote sensing images is designed. The algorithm is based on the geometric property of image surfaces and the algebraic property of image pixels, and it utilizes Gaussian curvature and reweighted graph total variation. First, the reweighted graph total variational prior and Gaussian curvature prior were combined to obtain the skeleton image which not only retains the gradient and sharp edge information, but also removes the harmful structural information in the latent clean image. Then, the skeleton image is used to estimate the fuzzy kernel, and then the non-blind deblurring algorithm is used to obtain the clear image. Finally, simulation validation was conducted on 8 fuzzy remote sensing images in different scenarios, and the results showed that, compared with other advanced image deblurring algorithms, the peak signal-to-noise ratio of the recovery effect of the deblurring algorithm proposed is higher than that of the comparison algorithm by 2.76, 1.84, 3.11, 2.79, 3.35, 2.76 dB, respectively. The structure similarity is higher than that of the comparison algorithm by 0.0792、0.0604、0.0873、0.0801、0.0997、0.0906, respectively. The remote sensing images recovered by our proposed algorithm have clear edge contours and local details while improving the clarity of remote sensing images.

Key words: computational mathematics, remote sensing image, Gaussian curvature, reweighted graph total variation, blind image deblurring

CLC Number: 

  • TP751

Fig.1

Illustration of pixel classification in a 2D image"

Fig.2

Flow chart of blind deblurring algorithm based on coarse-to-fine strategy"

Fig.3

Restored skeleton images and fuzzy kernels in the process of blind deblurring from coarse to fine strategy"

Fig.4

Clean remote sensing images"

Fig.5

PSNR and SSIM values of the images after debluring on different parameter λ"

Fig.6

Running times of remote sensing image blind deblurring algorithms"

Table 1

PSNR and SSIM values of blurred remote sensing image after deblurring"

图像文献[11文献[22文献[15文献[14文献[23文献[18本文算法
PSNRSSIMPSNRSSIMPSNRSSIMPSNRSSIMPSNRSSIMPSNRSSIMPSNRSSIM
海滩36.210.959637.430.962134.840.953435.270.955834.610.951836.860.962037.450.9634
沙漠34.150.993634.240.993934.230.993634.340.993833.970.993435.480.995035.490.9950
学校22.250.812222.030.790321.750.793321.470.784922.410.814721.800.784025.590.8775
度假村18.750.604621.960.718618.870.609018.490.592416.350.494618.320.584922.030.7209
机场26.590.878525.970.845326.740.881927.810.900227.130.887625.780.861827.860.8901
山地15.450.488515.500.464815.080.482315.490.491415.530.490015.990.494820.270.7045
广场20.640.738722.390.769620.560.733720.920.747920.120.719720.150.714825.050.8587
高架桥24.940.623626.850.704724.110.587324.970.625324.160.583124.620.611027.340.7226

Fig.7

Comparison of deblurring effect of blind remote sensing images"

1 王李祺, 候宇超, 高翔, 等. 基于深度学习与狮群SVM算法的遥感场景分类[J]. 吉林大学学报: 理学版, 2023, 61(4): 863-874.
Wang Li-qi, Hou Yu-chao, Gao Xiang, et al. Remote sensing scene classfication based on deep learning and lion swarm SVM algorithm[J]. Journal of Jilin University(Science Edition), 2023, 61(4): 863-874.
2 张玉波, 王建阳, 韩爽, 等. 一种非对称的轻量级图像盲与模糊网络[J]. 吉林大学学报: 理学版, 2023, 61(2): 362-370.
Zhang Yu-bo, Wang Jian-yang, Han Shuang, et al. An asymmetric lightweight image blind deblurring network[J]. Journal of Jilin University(Science Edition), 2023, 61(2): 362-370.
3 Lai W S, Ding J J, Lin Y Y, et al. Blur kernel estimation using normalized color-line priors[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 64-72.
4 Liu J, Yan M, Zeng T Y. Surface aware blind image deblurring[J]. IEEE transactions on Pattern Analysis and Machine Intelligence, 2021, 43(3): 1041-1055.
5 Nah S, Kim T H, Lee K M. Deep multi-scale convolutional neural network for dynamic scene deblurring[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Hawaii, USA, 2017: 257-265.
6 Kupyn O, Budzan V, Mykhailych M, et al. DeblurGAN: blind motion deblurring using conditional adversarial neworks[C]∥IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, USA, 2018: 8183-8192.
7 Zhang J W, Pan J S, Ren J, et al. Dynamic scene deblurring using spatially variant recurrent neural networks[C]∥IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR), Salt Lake City, USA, 2018: 2521-2529.
8 Krishnan D, Tay T, Fergus R. Blind deconvolution using a normalized sparsity measure[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Colorado Springs, USA, 2011: 233-240.
9 Xu L, Zheng S C, Jia J Y. Unnatural L0 sparse representation for natural image deblurring[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Portland, USA, 2013: 1107-1114.
10 Pan J, Su Z. Fast regularized kernel estimation for robust motion deblurring[J]. IEEE Signal Processing Letters, 2013, 20(9): 841-844.
11 Pan J S, Sun D Q, Pfister H, et al. Deblurring images via dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 40(10): 2315-2328.
12 岳有军, 云赛, 王红君, 等. 基于暗通道与低秩先验的运动模糊图像盲复原[J]. 电光与控制, 2019, 26(11): 95-98, 110.
Yue You-jun, Yun Sai, Wang Hong-jun, et al. Blind restoration of motion-blurred image based on dark channel and low-rank prior[J]. Electronics Optics & Control, 2019, 26(11): 95-98, 110.
13 Yan Y Y, Ren W Q, Gou Y F, et al. Image deblurring via extreme channels prior[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 6978-6986.
14 Ge X, Tan J, Zhang L. Blind image deblurring using a non-linear channel prior based on dark and bright channels[J]. IEEE Transactions on Image Processing, 2021, 30: 6970-6984.
15 Chen L, Fang F, Wang T, et al. Blind image deblurring with local maximum gradient prior[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR), Long Beach, USA, 2019: 1742-1750.
16 Ren Wen-qi, Cao Xiao-chun, Pan Jin-shan, et al. Image deblurring via enhanced low rank prior[J]. IEEE Transactions on Image Processing, 2016, 25(7): 3426-3437.
17 Dong J X, Pan J S, Su Z X. Blur kernel estimation via salient edges and low rank prior for blind image deblurring[J]. Signal Processing: Image Communication, 2017, 58: 134-145.
18 Ge X Y, Tan J Q, Zhang L, et al. Blind image deblurring with Gaussian curvature of the image surface[J]. Signal Processing: Image Communication, 2022, 100: No.116531.
19 Tang Y, Xue Y, Chen Y, et al. Blind deblurring with sparse representation via external patch priors[J]. Digital Signal Processing, 2018, 78: 322-331.
20 Yu J, Chang Z, Xiao C. Blur kernel estimation using sparse representation and cross-scale self-similarity[J]. Multimedia Tools and Applications, 2019, 78(13): 18549-18570.
21 Berger P, Hannak G, Matz G. Graph signal recovery via primaldual algorithms for total variation minimization[J]. IEEE Journal of Selected Topics in Signal Processing, 2017, 11(6): 842-855.
22 Bai Y, Cheung G, Liu X, et al. Graph based blind image deblurring from a single photograph[J]. IEEE Transactions on Image Processing, 2019, 28(3): 1404-1418.
23 Wen F, Ying R D, Liu Y P, et al. A simple local minimal intensity prior and an improved algorithm for blind image deblurring[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 31(8): 2923-2937.
24 Zhang Z Y, Zheng L L, Piao Y J, et al. Blind remote sensing image deblurring using local binary pattern prior[J]. Remote Sensing, 2022, 14(5): No.1276.
25 Li Z Y, Guo J Y, Zhang Y T, et al. Reference based multi-level features fusion deblurring network for optical remote sensing images[J]. Remote Sensing, 2022, 14(11): No.2520.
26 Lim H, Yu S, Park K, et al. Texture aware deblurring for remote sensing images using L0-based deblurring and L2-based fusion[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 3094-3108.
27 王琪瑶, 胡琸悦, 李潇雁, 等. 基于局部最大和最小强度先验的遥感图像盲去模糊[J]. 激光与光电子学进展, 2023, 60(4): 429-436.
Wang Qi-yao, Hu Zhuo-yue, Li Xiao-yan, et al. Blind deblurring of remote sensing images based on local maximum and minimum intensity prior[J]. Laser and Optoelectronics Progress, 2022, 60(4): 429-436.
28 刘晨辉, 尹增山, 高爽. 基于遥感图像序列的运动去模糊算法研究[J]. 激光与光电子学进展, 2022, 59(8): 496-504.
Liu Chen-hui, Yin Zeng-shan, Gao Shuang. Motion deblurring algorithm based on remote sensing image sequence[J]. Laser and Optoelectronics Progress, 2022, 59(8): 496-504.
29 Fergus R, Singh B, Hertzmann A, et al. Removing camera shake from a single photograph[J]. ACM Transactions on Graphics, 2006, 25(3): 787-794.
30 Levin A, Weiss Y, Durand F, et al. Understanding and evaluating blind deconvolution algorithms[C]∥IEEE Conference on Computer Vision and Pattern Recognition, Miami, USA, 2009: No.10836014.
31 Krishnan D, Fergus R. Fast image deconvolution using hyper-Laplacian priors[J]. Advances in Neural Information Processing Systems, 2009, 22: 1033-1041.
[1] Wei-xuan MA,Yan ZHANG,Chuan-xiang MA,Sa ZHU. Edge detection algorithm of noisy remote sensing image under different illumination conditions [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(1): 241-247.
[2] Bing ZHU,Zi-wei LI,Qi LI. Building segmentation method of remote sensing image based on improved SegNet [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(1): 248-254.
[3] Xiong-fei LI,Jia-jing WU,Xiao-li ZHANG,Ze-yu WANG,Yun-cong FENG. Remote sensing image fusion algorithm based on relative total variation structure extraction [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1775-1784.
[4] Jun-jun LI,Jian-nong CAO,Bei-bei CHENG,Juan LIAO,Ying-ying ZHU. High spatial resolution remote sensing imagery segmentation based on combination of pixels and multi⁃scaleobjects using spectral clustering [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 2098-2108.
[5] Xiong-fei LI,Lu SONG,Xiao-li ZHANG. Remote sensing image fusion based on cooperative empirical wavelet transform [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1307-1319.
[6] WU Kai-jun, WANG Chun-li, SHAN Ya-zhou, DU San-shan, LU Huai-wei. Chemical synapse coupling synchronization of Hindmarsh-Rose neurons under Gauss white noise [J]. 吉林大学学报(工学版), 2017, 47(5): 1554-1560.
[7] YU De-xin, LIU Chun-yu, ZHENG Kun, GUO Ya-juan, ZHAO Xin. Space occupancy estimating method based on remote sensing images [J]. 吉林大学学报(工学版), 2016, 46(3): 764-769.
[8] BAO Lei, XU Qi-zhi. Spectrum-keeping algorithm for fusing based on PCA [J]. 吉林大学学报(工学版), 2013, 43(增刊1): 88-91.
[9] Zhang Guo-min, Yin Jian-ping, Zhu En, Qiang Yong-gang . Hierarchical object detection in remote sensing image based on vision saliency [J]. 吉林大学学报(工学版), 2007, 37(03): 625-0629.
[10] HE Kai, YAN Lei. Improved Fractal Dimensional Algorithm of Romote Sensing Image Improved Fractal Dimensional Algorithm of Romote Sensing Image with Random Midpoint Replacement Method [J]. 吉林大学学报(工学版), 2005, 35(06): 617-0620.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Shoutao, LI Yuanchun. Autonomous Mobile Robot Control Algorithm Based on Hierarchical Fuzzy Behaviors in Unknown Environments[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] Liu Qing-min,Wang Long-shan,Chen Xiang-wei,Li Guo-fa. Ball nut detection by machine vision[J]. 吉林大学学报(工学版), 2006, 36(04): 534 -538 .
[3] Li Hong-ying; Shi Wei-guang;Gan Shu-cai. Electromagnetic properties and microwave absorbing property
of Z type hexaferrite Ba3-xLaxCo2Fe24O41
[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[4] Zhang Quan-fa,Li Ming-zhe,Sun Gang,Ge Xin . Comparison between flexible and rigid blank-holding in multi-point forming[J]. 吉林大学学报(工学版), 2007, 37(01): 25 -30 .
[5] Yang Shu-kai, Song Chuan-xue, An Xiao-juan, Cai Zhang-lin . Analyzing effects of suspension bushing elasticity
on vehicle yaw response character with virtual prototype method
[J]. 吉林大学学报(工学版), 2007, 37(05): 994 -0999 .
[6] . [J]. 吉林大学学报(工学版), 2007, 37(06): 1284 -1287 .
[7] Che Xiang-jiu,Liu Da-you,Wang Zheng-xuan . Construction of joining surface with G1 continuity for two NURBS surfaces[J]. 吉林大学学报(工学版), 2007, 37(04): 838 -841 .
[8] Liu Han-bing, Jiao Yu-ling, Liang Chun-yu,Qin Wei-jun . Effect of shape function on computing precision in meshless methods[J]. 吉林大学学报(工学版), 2007, 37(03): 715 -0720 .
[9] Li Yue-ying,Liu Yong-bing,Chen Hua . Surface hardening and tribological properties of a cam materials[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .
[10] Zhang He-sheng, Zhang Yi, Wen Hui-min, Hu Dong-cheng . Estimation approaches of average link travel time using GPS data[J]. 吉林大学学报(工学版), 2007, 37(03): 533 -0537 .