Journal of Jilin University(Engineering and Technology Edition) ›› 2023, Vol. 53 ›› Issue (11): 3069-3077.doi: 10.13229/j.cnki.jdxbgxb.20211429

Previous Articles     Next Articles

Modeling and analysis of grinding force for grinding titanium alloy with abrasive belt assisted by ultrasonic vibration

Zhi HUANG1(),Jie MIN1,Tao ZHOU1,Jian YANG2,Li-xing XIAO2,Lin-ze LI2   

  1. 1.School of Mechanical and Electrical Engineering,University of Electronic Science and Technology,Chengdu 611731,China
    2.Sichuan Chengfei Integration Technology Corp. ,Chengdu 610091,China
  • Received:2021-12-24 Online:2023-11-01 Published:2023-12-06

Abstract:

Based on Hertz contact theory, the contact model of contact wheel and workpiece is simplified to analyze the principle of ultrasonic vibration belt grinding, and the motion characteristics of ultrasonic assisted abrasive particles are analyzed. By dividing grinding force into cutting deformation force and friction force, the influence of ultrasonic vibration on cutting deformation force and friction force is analyzed. The results show that the proposed model has high prediction accuracy and provides effective reference and theoretical basis for subsequent practical machining guidance.

Key words: ultrasonic vibration, grinding force, titanium alloy, abrasive belt grinding

CLC Number: 

  • V216.3

Fig.1

Principle of ultrasonic vibration assisted abrasive belt grinding"

Fig.2

3D motion trajectory of abrasive particles in ultrasonic abrasive belt polishing"

Fig.3

Contact motion trajectory of a single abrasive particle"

Fig.4

Abrasive indentation model"

Fig.5

Force diagram of abrasive cutting deformation"

Fig.6

Section force diagram"

Fig.7

Process experiment site"

Fig.8

Structure of abrasive belt polishing device"

Fig.9

Image of grinding force measurement"

Table 1

Orthogonal experimental parameter"

实验 组别砂带线速度Vs/(m·s-1工件进给速度Vw/(mm·min-1磨削深度ap/μm振动幅度A/μm
125054
22100108
321501512
43501012
53100154
6315058
7450158
84100512
94150104

Table 2

Experimental results of grinding force"

磨削力实验组别
123456789
法向磨削力Fn/N7.828.409.646.058.677.874.825.636.92
切向磨削力Ft/N5.765.406.235.236.245.224.203.384.15

Fig.10

Grinding force experiment model value comparison"

Fig.11

Comparison of grinding force with or without ultrasonic vibration"

Fig.12

Mahr roughness meter"

Fig.13

Comparison of surface roughness before and without ultrasonic processing"

1 Xu X, Zhu D, Wang J, et al. Calibration and accuracy analysis of robotic belt grinding system using the ruby probe and criteria sphere[J]. Robotics and Computer-Integrated Manufacturing, 2018, 51: 189-201.
2 Yu T B, Yang X Z, An J H, et al. Material removal mechanism of two-dimensional ultrasonic vibration assisted polishing Inconel718 nickel-based alloy[J]. Int J Adv Manuf Technol, 2018, 96: 657-667.
3 Jiao F, Zhao B, Liu C S, et al. Material removal rate characteristics in ultrasonic aided lapping of engineering ceramics based on single-point scratch[J]. Key Engineering Materials, 2008, 375/376: 263-267.
4 Wu Y, Sun A G, Zhao B, et al. Modeling of high efficiency removal in the grinding of aluminal/ZrO2 nanocomposites with the aid of two-dimensional ultrasonic vibration[J]. Key Engineering Materials, 2007, 329: 451-458.
5 Kuo K L, Tsao C C. Rotary ultrasonic-assisted milling of brittle materials[J]. Transactions of Nonferrous Metals Society of China, 2012, 22: 793-800.
6 Yan Y Y, Zhao B, Wu Y, et al. Study on material removal mechanism of fine-crystalline ZrO2 ceramics under two dimensional ultrasonic grinding[J]. Materials Science Forum, 2006, 532/533: 532-535.
7 Yan W, Bo Z, Xun S Z. Modeling of material removal in workpiece lateral ultrasonic vibration grinding of fine-crystalline zirconia ceramics[J]. Key Engineering Materials, 2006, 315/316(4): 304-308.
8 赵波, 陈凡, 童景琳. 超声磨削材料去除率的理论分析与试验研究[J]. 河南理工大学学报: 自然科学版, 2013, 32(3): 302-307.
Zhao Bo, Chen Fan, Tong Jing-lin. Theoretical and experimental research on material removal rate under ultrasonic grinding[J]. Journal of Henan Polytechnic University (Natural Science Edition), 2013, 32(3): 302-307.
9 Suzuki K, Uematsu T, Makizaki T, et al. Ultrasonic grinding utilizing a stator of an ultrasonic motor[J]. The Proceedings of The Manufacturing & Machine Tool Conference, 2000, 2: 183-184.
10 Shen J Y, Dai B, Wu X, et al. Study on the material removal mechanism of glass in single diamond grain grinding with ultrasonic vibration assisted[J]. Int J of Abrasive Technology, 2019, 9(1): 60-72.
11 Tanaka Y, Yano A, Shinke N. Study on ultrasonic grinding (1st report): on the relations between the vibrational direction and stock removal[J]. Journal of the Japan Society for Precision Engineering, 1968, 34: 687-692.
12 Qin N, Pei Z J, Treadwell C, et al. Physics-based predictive cutting force model in ultrasonic-vibration-assisted grinding for titanium drilling[J]. Journal of Manufacturing Science and Engineering, 2009, 131(4): 481-498.
13 Das S, Pandivelan C. Grinding characteristics during ultrasonic vibration assisted grinding of alumina ceramic in selected dry and MQL conditions[J]. Materials Research Express, 2020, 7(8): 085404.
14 Xiao X, Zheng K, Liao W, et al. Study on cutting force model in ultrasonic vibration assisted side grinding of zirconia ceramics[J]. International Journal of Machine Tools & Manufacture, 2016(5): 58-67.
15 Sheng X M, Tang K, Yu J W, et al. Experimental research of grinding force and specific grinding energy of TC4 titanium alloy in high speed deep grinding[J]. Advanced Materials Research, 2009, 76/78: 55-60.
16 黄智, 董华章, 周振武, 等. 砂带磨削TC4磨削力数字建模及其预测[J]. 表面技术, 2018, 47(9): 250-258.
Huang Zhi, Dong Hua-zhang, Zhou Zhen-wu, et al. Modeling and prediction of grinding force on belt grinding TC4[J]. Surface Technology, 2018, 47(9): 250-258.
17 Leng Y F, Zhang N. Experiment research on abrasive belt vibration grinding terminal surface of work piece[J]. Advanced Materials Research,2010, 154/155: 1240-1243.
18 唐进元, 周伟华, 黄于林. 轴向超声振动辅助磨削的磨削力建模[J]. 机械工程学报, 2016, 52(15): 184-191.
Tang Jin-yuan, Zhou Wei-hua, Huang Yu-lin. Modeling on grinding force assisted with aial ultrasonic vibration[J]. Journal of Mechanical Engineering, 2016, 52(15): 184-191.
19 任庆磊, 魏昕, 谢小柱, 等. 硅片自旋转磨削中基于力的微接触机理[J]. 吉林大学学报: 工学版, 2018, 48(3): 796-802.
Ren Qing-lei, Wei Xin, Xie Xiao-zhu, et al. Micro contact mechanism based on force in self rotation grinding of silicon wafer[J]. Journal of Jilin University (Engineering and Technology Edition), 2018, 48(3): 796-802.
20 Zhou H, Ding W F, Li Z, et al. Predicting the grinding force of titanium matrix composites using the genetic algorithm optimizing back-propagation neural network model[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2019, 233(4): 1157-1167.
21 王家忠, 王龙山, 李国发, 等. 外圆纵向磨削表面粗糙度的模糊预测与控制[J]. 吉林大学学报: 工学版, 2005,35(4): 386-390.
Wang Jia-zhong, Wang Long-shan, Li Guo-fa, et al. Surface roughness prediction and control of cylinder traverse grinding based on fuzzy logic[J]. Journal of Jilin University (Engineering and Technology Edition), 2005, 35(4): 386-390.
22 任敬心, 华定安. 磨削原理[M]. 西安: 西北工业大学出版社, 1988.
Ren Jing-xin, Hua Ding-an. Grinding Principles[M]. Xi'an: Northwestern Polytechnic University Press, 1988.
23 Agarwal S, Venkateswara R P. Predictive modeling of force and power based on a new analytical undeformed chip thickness model in ceramic grinding[J]. International Journal of Machine Tools and Manufacture, 2013, 65: 68-78.
[1] Li HUI,Jia-chen LU,Song ZHOU,Jin-lan AN,Guan-yan ZHOU,Xiao-peng LIU. Effect of heat treatment on fatigue properties of TC4 titanium alloy by laser double beam welded joint [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(1): 105-110.
[2] Qing-feng GUAN,Xin-wen YAO,Yang YANG,Ling-yan ZHANG,Di LIU,Chen LI,Peng LYU. Preparation and property of Cr alloying layer on TC4 after surface alloying induced by high current pulsed electron beam [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 2002-2009.
[3] ZHANG Lei, GENG Wei-qiang, BAO Yong-ji, ZHAO Ji. Ultrosonic powder feeding system in hydroxyapatite cold spraying equipment [J]. , 2012, (06): 1402-1408.
[4] Peng Tai-jiang,Yang shu-chen,Yang Zhi-gang,Cheng Guang-ming,Zeng Ping, Zhang De-jun . Experimental study on ultrasonic antifriction behavior [J]. 吉林大学学报(工学版), 2006, 36(增刊2): 88-90.
[5] Tan Fu-xing;Li Ming-zhe;Qian Zhi-rui;Yuan Yuan.

Numerical simulation on process of multipoint forming for titanium alloy cranial prosthesis

[J]. 吉林大学学报(工学版), 2006, 36(06): 851-0855.
[6] Guo Wei, Zhao Xi-hua, Song Min-xia,Feng Ji-cai,Yang Biao1. Pattern analysis on diffusion bonding of TC4 and QAL1031.5 [J]. 吉林大学学报(工学版), 2006, 36(03): 285-0288.
[7] Song Minxia,Zhao Xihua,Guo Wei,Feng Jicai. Diffusion Bonding of Ti-6Al-4V to ZQSn10-10 with Nickel Interlayer [J]. 吉林大学学报(工学版), 2006, 36(01): 42-0045.
[8] CHANG Ying, WU Bo-da, YANG Zhi-gang, CHENG Guang-ming, TIAN Feng-jun. Bearing capacity and anti-friction behavior of ultrasonic vibration bearing [J]. 吉林大学学报(工学版), 2004, (2): 222-225.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Yang Shu-kai, Song Chuan-xue, An Xiao-juan, Cai Zhang-lin . Analyzing effects of suspension bushing elasticity
on vehicle yaw response character with virtual prototype method
[J]. 吉林大学学报(工学版), 2007, 37(05): 994 -0999 .
[2] . [J]. 吉林大学学报(工学版), 2007, 37(06): 1284 -1287 .
[3] Liu Han-bing, Jiao Yu-ling, Liang Chun-yu,Qin Wei-jun . Effect of shape function on computing precision in meshless methods[J]. 吉林大学学报(工学版), 2007, 37(03): 715 -0720 .
[4] Yang Qing-fang, Chen Lin . Division approach of traffic control work zone[J]. 吉林大学学报(工学版), 2006, 36(增刊2): 139 -142 .
[5] LI Shoutao, LI Yuanchun. Autonomous Mobile Robot Control Algorithm Based on Hierarchical Fuzzy Behaviors in Unknown Environments[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[6] Liu Qing-min,Wang Long-shan,Chen Xiang-wei,Li Guo-fa. Ball nut detection by machine vision[J]. 吉林大学学报(工学版), 2006, 36(04): 534 -538 .
[7] Li Hong-ying; Shi Wei-guang;Gan Shu-cai. Electromagnetic properties and microwave absorbing property
of Z type hexaferrite Ba3-xLaxCo2Fe24O41
[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[8] Zhang Quan-fa,Li Ming-zhe,Sun Gang,Ge Xin . Comparison between flexible and rigid blank-holding in multi-point forming[J]. 吉林大学学报(工学版), 2007, 37(01): 25 -30 .
[9] Yu Hua-nan, Kang Jian . An improved blind multiuser detection scheme based on Kalman filter[J]. 吉林大学学报(工学版), 2006, 36(增刊2): 122 -125 .
[10] Li Cheng, Liu Zhi-hua, Zhang Ping . Analysis on stress and displacement of a composite flywheel composed of twolayer rotor with pre-displacement[J]. 吉林大学学报(工学版), 2007, 37(04): 828 -832 .