Journal of Jilin University(Engineering and Technology Edition) ›› 2023, Vol. 53 ›› Issue (11): 3246-3252.doi: 10.13229/j.cnki.jdxbgxb.20230111

Previous Articles     Next Articles

Accurate funding method for student assistance system based on improved Apriori algorithm

Kun MA1(),Zhe WANG2(),Wen-bo FAN2   

  1. 1.Department of Student Affairs,Jilin University,Changchun 130012,China
    2.Big Data and Network Management Center,Jilin University,Changchun 130012,China
  • Received:2023-02-07 Online:2023-11-01 Published:2023-12-06
  • Contact: Zhe WANG E-mail:makun602@jlu.edu.cn;wangzhe@jlu.edu.cn

Abstract:

The precision funding process of the student funding system is susceptible to issues such as redundant data and false data, resulting in poor accuracy of precision funding. Therefore, a study on the precision funding method of the student funding system based on the improved Apriori algorithm is proposed. This method first collects student consumption data and uses an extended tree like knowledge base to clean damaged and redundant data in the consumption data, avoiding the impact of such data on the precise funding process. Secondly, the outlier detection method based on normal distribution is used to obtain the poor students' label data. Finally, the improved Apriori algorithm is used to obtain the association rules between students' consumption and family economic status, which provides the basis for the identification of poor students and completes the precise funding of the student funding system. The experimental results show that the proposed method has high identification accuracy, long running time and low space complexity for poor students.

Key words: extended tree knowledge base, outlier detection, poor student label data, scan database, association rules

CLC Number: 

  • TP311

Fig.1

Architecture of student consumption data collection system"

Fig.2

Accurate funding process based on improved Apriori algorithm"

Fig.3

Confusion matrix of different methods"

Table 1

Running time of different methods"

实验次数运行时间/s
本文方法文献[3]方法文献[4]方法
120.0640.1454.69
219.1242.1755.64
319.0445.2154.72
419.0945.2957.62
521.0845.1854.66
620.0246.1654.67
719.1345.2154.71
821.0244.2258.54
920.0539.1654.55
1019.0345.2353.47
1120.0343.6556.87
1221.0441.2860.15
1319.8939.8854.55
1420.4141.8960.52
1521.0640.2757.63

Fig.4

Memory storage consumed by different methods"

1 刘额尔敦吐. 中加民族高等教育财政资助政策比较分析[J]. 河北师范大学学报: 教育科学版, 2022, 24(3): 62-68.
Liuerduntu. Financial aid policies for ethnic higher education: a comparative analysis of China and Canada[J]. Journal of Hebei Normal University(Educational Science Edition), 2022, 24 (3): 62-68.
2 邱恬, 邱小健. 我国职业教育学生资助政策的变迁逻辑与优化路径——基于历史制度主义视角的分析[J]. 职教论坛, 2021, 37(10): 78-84.
Qiu Tian, Qiu Xiao-jian. The changing logic and optimizing path of student financial aid policy of Vocational education in China—a perspective of historical institutionalism[J]. Journal of Vocational Education, 2021, 37(10): 78-84.
3 郭佳君, 杨波, 朱剑林, 等. 面向不平衡样本的高校学生资助等级分类模型[J]. 中南民族大学学报: 自然科学版, 2022, 41(1): 101-108.
Guo Jia-jun, Yang Bo, Zhu Jian-lin, et al. A classification model of college students funding level for imbalanced samples[J]. Journal of South-Central University for Nationalities(Natural Science Edition), 2022, 41(1): 101-108.
4 邹琳. 基于BP神经网络的精准资助模型构建——对突发公共卫生事件的影响分析[J]. 东南大学学报:哲学社会科学版, 2021, 23(): 116-119.
Zou Lin. Construction of precise funding model based on BP neural network—analysis of the impact on public health emergencies[J]. Journal of Southeast University (Philosophy and Social Science Edition), 2021, 23(Sup.2): 116-119.
5 郑婷婷. 高职院校学生资助政策体系实施成效与优化对策——基于江苏省3所高职院校的调查[J]. 职业技术教育, 2021, 42(18): 32-36.
Zheng Ting-ting. Implementation effect and optimizing countermeasures of student financial aid policy system in higher vocational colleges—based on a survey of 3 higher vocational colleges in Jiangsu province[J]. Vocational and Technical Education, 2021, 42(18): 32-36.
6 赵鑫, 王然风, 付翔. 基于Hadoop生态圈的选煤数据中台设计[J]. 工矿自动化, 2021, 47(12): 121-127.
Zhao Xin, Wang Ran-feng, Fu Xiang. Design of coal preparation data center platform based on Hadoop ecosystem[J]. Industry and Mine Automation, 2021, 47(12): 121-127.
7 高菲, 宋韶旭, 王建民. 多区间速度约束下的时序数据清洗方法[J]. 软件学报, 2021, 32(3): 689-711.
Gao Fei, Song Shao-xu, Wang Jian-min. Time series data cleaning under multi-speed constraints[J]. Journal of Software, 2021, 32(3): 689-711.
8 丁晓阳, 王兰成. 网络论坛文本特征词权重计算优化方法研究[J]. 情报理论与实践, 2021, 44(5): 187-192.
Ding Xiao-yang, Wang Lan-cheng. Research on optimized calculation method for weight of terms in BBS text[J]. Information Studies: Theory & Application, 2021, 44(5): 187-192.
9 魏正元, 彭天奎, 周晓娅. Alpha偏幂正态分布及其应用[J]. 应用概率统计, 2022, 38(5): 647-658.
Wei Zheng-yuan, Peng Tian-kui, Zhou Xiao-ya. Alpha skew power normal distribution and its application[J]. Chinese Journal of Applied Probability and Statistics, 2022, 38(5): 647-658.
10 孟杰, 沈文静, 杨贵军, 等. 复杂抽样的Bootstrap方差估计方法及应用[J]. 数理统计与管理, 2021, 40(2): 266-278.
Meng Jie, Shen Wen-jing, Yang Gui-jun, et al. Bootstrap variance estimation method and application for complex sampling[J]. Journal of Applied Statistics and Management, 2021, 40(2): 266-278.
11 杨燕燕, 张晓, 李翔宇, 等. 基于样本和特征搜索空间不断缩小的模糊粗糙集特征选择[J]. 重庆邮电大学学报: 自然科学版, 2021, 33(5): 759-768.
Yang Yan-yan, Zhang Xiao, Li Xiang-yu, et al. Fuzzy rough set-based feature selection with the ever-shortening scope of samples and features[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2021, 33(5): 759-768.
12 黄剑湘, 林铮, 刘可真, 等. 考虑换流站海量事件的关联规则挖掘分析方法[J]. 电力系统保护与控制, 2022, 50(12): 117-125.
Huang Jian-xiang, Lin Zheng, Liu Ke-zhen, et al. Association rule mining analysis method considering massive events in a converter station[J]. Power System Protection and Control, 2022, 50(12): 117-125.
13 任文娟, 杨战鹏, 许光銮, 等. 海上动目标身份置信度融合计算模型[J]. 系统工程与电子技术, 2023, 45(4): 1082-1089.
Ren Wen-juan, Yang Zhan-peng, Xu Guang-luan, et al. Fusion calculation model of sea moving target identity confidence[J]. Systems Engineering and Electronics, 2023, 45(4): 1082-1089.
14 严爱俐, 刘漫丹. 基于动态多最小支持度的用户频繁轨迹挖掘[J]. 计算机工程与设计, 2022, 43(6): 1657-1664.
Yan Ai-li, Liu Man-dan. Users' frequent tracks mining based on dynamic multi-minimum support[J]. Computer Engineering and Design, 2022, 43(6): 1657-1664.
15 苗雷星, 曹洪平. 真子群个数与极小真子群覆盖数相等的群[J]. 西南师范大学学报: 自然科学版, 2021, 46(8): 7-9.
Miao Lei-xing, Cao Hong-ping. Groups with number of proper subgroups equal to minimal number of proper subgroups required to cover the group[J]. Journal of Southwest Normal University (Natural Science Edition), 2021, 46(8): 7-9.
[1] Li-fang FU,Zhuo CHEN,Chang-lin AO. Dynamic outlier detection algorithm for network large data set based on classification and regression trees decision tree [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(9): 2620-2625.
[2] LI Song-sheng, ZHAO Yan-wei, GU Xi-ren. Application of improved FUP algorithm on hardware product quality analysis system [J]. 吉林大学学报(工学版), 2012, 42(增刊1): 251-254.
[3] WANG Zi-qiang,DUAN Ai-ling,ZHANG De-xian . Efficient outlier detection algorithm based on support vector data description [J]. 吉林大学学报(工学版), 2009, 39(02): 499-0503.
[4] CHENG Xiao-qing, YUAN Sen-miao. Synthetic Data Generation on Association Rules [J]. 吉林大学学报(工学版), 2000, (3): 47-50.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Shoutao, LI Yuanchun. Autonomous Mobile Robot Control Algorithm Based on Hierarchical Fuzzy Behaviors in Unknown Environments[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] Liu Qing-min,Wang Long-shan,Chen Xiang-wei,Li Guo-fa. Ball nut detection by machine vision[J]. 吉林大学学报(工学版), 2006, 36(04): 534 -538 .
[3] Li Hong-ying; Shi Wei-guang;Gan Shu-cai. Electromagnetic properties and microwave absorbing property
of Z type hexaferrite Ba3-xLaxCo2Fe24O41
[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[4] Zhang Quan-fa,Li Ming-zhe,Sun Gang,Ge Xin . Comparison between flexible and rigid blank-holding in multi-point forming[J]. 吉林大学学报(工学版), 2007, 37(01): 25 -30 .
[5] Yang Shu-kai, Song Chuan-xue, An Xiao-juan, Cai Zhang-lin . Analyzing effects of suspension bushing elasticity
on vehicle yaw response character with virtual prototype method
[J]. 吉林大学学报(工学版), 2007, 37(05): 994 -0999 .
[6] . [J]. 吉林大学学报(工学版), 2007, 37(06): 1284 -1287 .
[7] Liu Han-bing, Jiao Yu-ling, Liang Chun-yu,Qin Wei-jun . Effect of shape function on computing precision in meshless methods[J]. 吉林大学学报(工学版), 2007, 37(03): 715 -0720 .
[8] Yang Qing-fang, Chen Lin . Division approach of traffic control work zone[J]. 吉林大学学报(工学版), 2006, 36(增刊2): 139 -142 .
[9] Li Yue-ying,Liu Yong-bing,Chen Hua . Surface hardening and tribological properties of a cam materials[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .
[10] Zhang He-sheng, Zhang Yi, Wen Hui-min, Hu Dong-cheng . Estimation approaches of average link travel time using GPS data[J]. 吉林大学学报(工学版), 2007, 37(03): 533 -0537 .